Qualitative and numerical analysis of the Rossler model: Bifurcations of equilibria

被引:33
作者
Barrio, R. [1 ,2 ]
Blesa, F. [3 ]
Dena, A. [4 ]
Serrano, S. [1 ,2 ]
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, GME, E-50009 Zaragoza, Spain
[2] Univ Zaragoza, IUMA, E-50009 Zaragoza, Spain
[3] Univ Zaragoza, Dept Fis Aplicada, E-50009 Zaragoza, Spain
[4] Acad Gen Mil, Ctr Univ Def, E-50090 Zaragoza, Spain
关键词
Rossler equations; Bifurcations of equilibria; Hopf bifurcation; HOPF-BIFURCATION; PERIODIC-ORBITS; SYSTEM; ATTRACTORS; DYNAMICS; CYCLES; CHAOS;
D O I
10.1016/j.camwa.2011.09.064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show the combined use of analytical and numerical techniques in the study of bifurcations of equilibria of low-dimensional chaotic problems. We study in detail different aspects of the paradigmatic Rossler model. We provide analytical formulas for the stability of the equilibria as well as some of their codimension one, two, and three bifurcations. In particular, we carry out a complete study of the Andronov-Hopf bifurcation, establishing explicit formulas for its location and studying its character numerically, determining a curve of generalized-Hopf bifurcation, where the Hopf bifurcation changes from subcritical to supercritical. We also briefly study some routes among the different Andronov-Hopf bifurcation curves and how these routes are influenced by the local and global bifurcations of limit cycles. Finally, we show the U-shape of the homoclinic bifurcation curve at the studied parameter values. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4140 / 4150
页数:11
相关论文
共 30 条
[1]   Resonances of periodic orbits in Rossler system in presence of a triple-zero bifurcation [J].
Algaba, Antonio ;
Freire, Emilio ;
Gamero, Estanislao ;
Rodriguez-Luis, Alejandro J. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (06) :1997-2008
[2]  
[Anonymous], 1965, Sov. Math. Doklady
[3]  
[Anonymous], 2004, ELEMENTS APPL BIFURC
[4]  
[Anonymous], 1993, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, DOI DOI 10.1103/PhysRevE.69.022901
[5]  
[Anonymous], 2000, AUTO2000 CONTINUATIO
[6]  
ARGYRIS J, 1994, EXPLORATION CHAOS TE, V7
[7]   Sensitivity tools vs. Poincare sections [J].
Barrio, R .
CHAOS SOLITONS & FRACTALS, 2005, 25 (03) :711-726
[8]   Global organization of spiral structures in biparameter space of dissipative systems with Shilnikov saddle-foci [J].
Barrio, Roberto ;
Blesa, Fernando ;
Serrano, Sergio ;
Shilnikov, Andrey .
PHYSICAL REVIEW E, 2011, 84 (03)
[9]   Qualitative analysis of the Rossler equations: Bifurcations of limit cycles and chaotic attractors [J].
Barrio, Roberto ;
Blesa, Fernando ;
Serrano, Sergio .
PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (13) :1087-1100
[10]  
BAUTIN NN, 1948, AKAD NAUK SSSR PRIKL, V12, P691