Aerodynamic Characteristics of Bristled Wings in Flapping Flight

被引:1
|
作者
Shen, Tong [1 ]
Tu, Zhan [2 ]
Li, Daochun [1 ]
Kan, Zi [1 ]
Xiang, Jinwu [1 ]
机构
[1] Beihang Univ, Sch Aeronaut Sci & Engn, Beijing 100191, Peoples R China
[2] Beihang Univ, Inst Unmanned Syst, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
bristled wing; insect flight; clap-and-fling; low Reynolds number; insect aerodynamics; MECHANISMS; CLAP; FLOW;
D O I
10.3390/aerospace9100605
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This study focuses on the aerodynamics of the smallest flying insects' bristled wings. We measured and analyzed wing morphological data from 38 specimens of Mymaridae. Bristled wing flight was numerically simulated at Reynolds numbers from 1 to 80. The aerodynamic force, power, and efficiency of bristled wings using lift-based stroke, drag-based stroke, and clap-and-fling mechanism were evaluated. An unusual clap-and-fling pattern considering bristle crossing was first proposed. Our study shows that with a reduction in the wingspan of Mymaridae, the proportion of the wingtip bristled area increases. A lift-based stroke is superior to a drag-based stroke in terms of vertical force production and aerodynamic efficiency at 5 <= Re <= 20. Bristled wings employing the clap-and-fling mechanism achieve both vertical force and efficiency augmentation, while bristle crossing incurs a substantial horizontal force and contributes little to vertical force augmentation.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Efficiency and Aerodynamic Performance of Bristled Insect Wings Depending on Reynolds Number in Flapping Flight
    O'Callaghan, Felicity
    Sarig, Amir
    Ribak, Gal
    Lehmann, Fritz-Olaf
    FLUIDS, 2022, 7 (02)
  • [2] Sticky flapper: three-dimensional flapping flight with bristled wings
    Kasoju, V. T.
    Santhanakrishnan, A.
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2021, 61 : E445 - E445
  • [3] An aerodynamic model for insect flapping wings in forward flight
    Han, Jong-Seob
    Chang, Jo Won
    Han, Jae-Hung
    BIOINSPIRATION & BIOMIMETICS, 2017, 12 (03)
  • [4] Effect of the flexibility of flapping wings on their aerodynamic characteristics
    Zhou, Chaoying
    Zhu, Jianyang
    Wang, Chao
    Xie, Peng
    Information Technology Journal, 2012, 11 (12) : 1758 - 1763
  • [5] Aerodynamic effects of corrugation in flapping insect wings in forward flight
    Xueguang Meng
    Mao Sun
    Journal of Bionic Engineering, 2011, 8 : 140 - 150
  • [6] Approximate Aerodynamic and Aeroelastic Modeling of Flapping Wings in Forward Flight
    Gogulapati, Abhijit
    Friedmann, Peretz P.
    AIAA JOURNAL, 2014, 52 (01) : 213 - 219
  • [7] Aerodynamic effects of corrugation in flapping insect wings in hovering flight
    Meng, Xue Guang
    Xu, Lei
    Sun, Mao
    JOURNAL OF EXPERIMENTAL BIOLOGY, 2011, 214 (03): : 432 - 444
  • [9] Aerodynamic performance of the flexibility of corrugated dragonfly wings in flapping flight
    Wang, Yuping
    He, Xinyi
    He, Guoyi
    Wang, Qi
    Chen, Longsheng
    Liu, Xiaochen
    ACTA MECHANICA SINICA, 2022, 38 (11)
  • [10] Aerodynamic effects of deviating motion of flapping wings in hovering flight
    Kim, Ho-Young
    Han, Jong-Seob
    Han, Jae-Hung
    BIOINSPIRATION & BIOMIMETICS, 2019, 14 (02)