The Wavelet Compressibility of Compound Poisson Processes

被引:3
作者
Aziznejad, Shayan [1 ]
Fageot, Julien [2 ]
机构
[1] Ecole Polytech Fed Lausanne, Biomed Imaging Grp, CH-1015 Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, Audio Visual Commun Lab LCAV, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
Compound Poisson processes; Haar wavelets; wavelet approximation; M-term approximation; sparse representation; LEVY WHITE-NOISE; TREE APPROXIMATION; SAMPLE PATHS; FINITE RATE; TRANSFORM; SIGNALS;
D O I
10.1109/TIT.2021.3139287
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we precisely quantify the wavelet compressibility of compound Poisson processes. To that end, we expand the given random process over the Haar wavelet basis and we analyse its asymptotic approximation properties. By only considering the nonzero wavelet coefficients up to a given scale, what we call the greedy approximation, we exploit the extreme sparsity of the wavelet expansion that derives from the piecewise-constant nature of compound Poisson processes. More precisely, we provide lower and upper bounds for the mean squared error of greedy approximation of compound Poisson processes. We are then able to deduce that the greedy approximation error has a sub-exponential and super-polynomial asymptotic behavior. Finally, we provide numerical experiments to highlight the remarkable ability of wavelet-based dictionaries in achieving highly compressible approximations of compound Poisson processes.
引用
收藏
页码:2752 / 2766
页数:15
相关论文
共 72 条
[1]   BREAKING THE COHERENCE BARRIER: A NEW THEORY FOR COMPRESSED SENSING [J].
Adcock, Ben ;
Hansen, Anders C. ;
Poon, Clarice ;
Roman, Bogdan .
FORUM OF MATHEMATICS SIGMA, 2017, 5 :1-84
[2]   Generalized Sampling and Infinite-Dimensional Compressed Sensing [J].
Adcock, Ben ;
Hansen, Anders C. .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2016, 16 (05) :1263-1323
[3]   DISCRETE COSINE TRANSFORM [J].
AHMED, N ;
NATARAJAN, T ;
RAO, KR .
IEEE TRANSACTIONS ON COMPUTERS, 1974, C 23 (01) :90-93
[4]  
Ahmed N., 1975, Orthogonal transforms for digital signal processing
[5]  
Akansu W.S.A.I.S.A.N., 2010, Physical communication, V3, P1, DOI [10.1016/j.phycom.2009.07.001, DOI 10.1016/J.PHYCOM.2009.07.001]
[6]   Sparsity and Infinite Divisibility [J].
Amini, Arash ;
Unser, Michael .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (04) :2346-2358
[7]   Compressibility of Deterministic and Random Infinite Sequences [J].
Amini, Arash ;
Unser, Michael ;
Marvasti, Farokh .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (11) :5193-5201
[8]  
[Anonymous], 2003, STAT PATTERN RECOGNI
[9]  
[Anonymous], 2010, PATTERN THEORY STOCH
[10]   Wavelet analysis of the Besov regularity of Levy white noise [J].
Aziznejad, Shayan ;
Fageot, Julien .
ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25 :1-38