Advanced Manufactured Fused Filament Fabrication 3D Printed Osseointegrated Prosthesis for a Transhumeral Amputation Using Taulman 680 FDA

被引:7
作者
Lathers, Steven [1 ]
La Belle, Jeffrey [1 ]
机构
[1] Arizona State Univ, Sch Biol & Hlth Syst Engn, 550 East Orange St, Tempe, AZ 85287 USA
关键词
additive manufacturing; 3D printing; medical application; additive manufacturing processes and design; BONE; IMPLANTS; ATTACHMENT; SCAFFOLDS;
D O I
10.1089/3dp.2016.0010
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Presented here is a thermoplastic Fused Filament Fabrication 3D printed osseointegrated upper limb prosthesis for average adult transhumeral amputation with mechanical properties greater than upper limb skeletal bone. The prosthesis is designed with a one step surgical process, large cavities for bone tissue ingrowth for greater stability, made of a polyamide six-based material that has an elastic modulus less than skeletal bone, and can be 3D printed for user-specific sizes if needed. The design is an improvement upon the current two-part osseointegrated prosthetics that are composed of a fixture and abutment. This prosthetic requires two invasive surgeries for implantation and is made of titanium, which has an elastic modulus greater than bone. An elastic modulus greater than bone causes stress shielding and over time can cause loosening of the prosthetic. The material was first characterized to establish how percent infill and layer height affected the strength of a printed part. The results showed unique and unexpected results than what would have been predicted. Tension samples showed a stabilization period before failure, and shear samples had a unique parabola curve instead of a linear trend in data. Mechanical results of the new prosthetic design include maximum tensile pullout force of 6568.33N and 5256.37N in bending in a simulated implantation environment. The prosthesis can also be seated or torqued between 0.50Nm and 4.00Nm before failure occurs for a tight-fitting prosthetic for attachment. The work presented here shows that a 3D printed prosthetic attachment device can be made stronger than bone and how 3D printing can impact the medical field.
引用
收藏
页码:166 / 174
页数:9
相关论文
共 50 条
  • [21] A Fully 3D-Printed Conformal Patch Antenna using Fused Filament Fabrication Method
    Mitra, Dipankar
    Striker, Ryan
    Cleveland, Jerika
    Lewis, Jacob
    Braaten, Benjamin D.
    Kabir, Kazi S.
    Roy, Sayan
    Ye, Shengrong
    2020 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND NORTH AMERICAN RADIO SCIENCE MEETING, 2020, : 1405 - 1406
  • [22] A Finite Element Method to Predict the Mechanical Behavior of a Pre-Structured Material Manufactured by Fused Filament Fabrication in 3D Printing
    Zouaoui, Marouene
    Gardan, Julien
    Lafon, Pascal
    Makke, Ali
    Labergere, Carl
    Recho, Naman
    APPLIED SCIENCES-BASEL, 2021, 11 (11):
  • [23] Embedding electronics in 3D printed structures by combining fused filament fabrication and supersonic cluster beam deposition
    Bellacicca, Andrea
    Santaniello, Tommaso
    Milani, Paolo
    ADDITIVE MANUFACTURING, 2018, 24 : 60 - 66
  • [24] Challenges and Prospects for Industrial Application of 3D Printing Technology by Fused Filament Fabrication
    Endo G.
    Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering, 2024, 90 (06): : 441 - 445
  • [25] Interface geometries in 3D multi-material prints by fused filament fabrication
    Ribeiro, Micaela
    Carneiro, Olga Sousa
    da Silva, Alexandre Ferreira
    RAPID PROTOTYPING JOURNAL, 2019, 25 (01) : 38 - 46
  • [26] 3D PEEK Objects Fabricated by Fused Filament Fabrication (FFF)
    Baek, Inwoo
    Kwon, Oeun
    Lim, Chul-Min
    Park, Kyoung Youl
    Bae, Chang-Jun
    MATERIALS, 2022, 15 (03)
  • [27] The Surface Characterisation of Fused Filament Fabricated (FFF) 3D Printed PEEK/Hydroxyapatite Composites
    Rodzen, Krzysztof
    McIvor, Mary Josephine
    Sharma, Preetam K.
    Acheson, Jonathan G.
    McIlhagger, Alistair
    Mokhtari, Mozaffar
    McFerran, Aoife
    Ward, Joanna
    Meenan, Brian J.
    Boyd, Adrian R.
    POLYMERS, 2021, 13 (18)
  • [28] Effects of key process parameters on tensile properties and interlayer bonding behavior of 3D printed PLA using fused filament fabrication
    Gajjar, Tusharbhai
    Yang, Richard
    Ye, Lin
    Zhang, Y. X.
    PROGRESS IN ADDITIVE MANUFACTURING, 2025, 10 (02) : 1261 - 1280
  • [29] Emissions from the Fused Filament Fabrication 3D Printing with Lignocellulose/Polylactic Acid Filament
    Zhu, Qianqian
    Yao, Qian
    Liu, Jun
    Sun, Jianzhong
    Wang, Qianqian
    BIORESOURCES, 2020, 15 (04) : 7560 - 7572
  • [30] Mechanical and Dynamic Behavior of Fused Filament Fabrication 3D Printed Polyethylene Terephthalate Glycol Reinforced with Carbon Fibers
    Mansour, M.
    Tsongas, K.
    Tzetzis, D.
    Antoniadis, A.
    POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING, 2018, 57 (16) : 1715 - 1725