Steady-state imaging with inhomogeneous magnetization transfer contrast using multiband radiofrequency pulses

被引:13
|
作者
Malik, Shaihan J. [1 ,2 ]
Teixeira, Rui P. A. G. [1 ,2 ]
West, Daniel J. [1 ,2 ]
Wood, Tobias C. [3 ]
Hajnal, Joseph V. [1 ,2 ]
机构
[1] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
[2] Kings Coll London, Ctr Developing Brain, London, England
[3] Kings Coll London, Inst Psychiat Psychol & Neurosci, Neuroimaging Dept, London, England
基金
英国工程与自然科学研究理事会;
关键词
dipolar order; ihMT; inhomogeneous MT; magnetization transfer; myelin imaging; BROADENED LINES; IN-VIVO; IHMT; SENSITIVITY; EXCHANGE; ORIGIN; MODEL;
D O I
10.1002/mrm.27984
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Inhomogeneous magnetization transfer (ihMT) is an emerging form of MRI contrast that may offer high specificity for myelinated tissue. Existing ihMT and pulsed MT sequences often use separate radiofrequency pulses for saturation and signal excitation. This study investigates the use of nonselective multiband radiofrequency pulses for simultaneous off-resonance saturation and on-resonance excitation specifically for generation of ihMT contrast within rapid steady-state pulse sequences. Theory and Methods: A matrix-based signal modeling approach was developed and applied for both balanced steady state free precession and spoiled gradient echo sequences, accounting specifically for multiband pulses. Phantom experiments were performed using a combination of balanced steady state free precession and spoiled gradient echo sequences, and compared with model fits. A human brain imaging exam was performed using balanced steady state free precession sequences to demonstrate the achieved contrast. Results: A simple signal model derived assuming instantaneous radiofrequency pulses was shown to agree well with full integration of the governing equations and provided fits to phantom data for materials with strong ihMT contrast (PL161 root mean square error = 0.9%, and hair conditioner root mean square error = 2.4%). In vivo ihMT ratio images showed the expected white matter contrast that has been seen by other ihMT investigations, and the observed ihMT ratios corresponded well with predictions. Conclusions: ihMT contrast can be generated by integrating multiband radiofrequency pulses directly into both spoiled gradient echo and balanced steady state free precession sequences, and the presented signal modeling approach can be used to understand the acquired signals.
引用
收藏
页码:935 / 949
页数:15
相关论文
共 50 条
  • [1] Whole brain inhomogeneous magnetization transfer (ihMT) imaging: Sensitivity enhancement within a steady-state gradient echo sequence
    Mchinda, Samira
    Varma, Gopal
    Prevost, Valentin H.
    Le Troter, Arnaud
    Rapacchi, Stanislas
    Guye, Maxime
    Pelletier, Jean
    Ranjeva, Jean-Philippe
    Alsop, David C.
    Duhamel, Guillaume
    Girard, Olivier M.
    MAGNETIC RESONANCE IN MEDICINE, 2018, 79 (05) : 2607 - 2619
  • [2] Simultaneous fat saturation and magnetization transfer contrast imaging with steady-state incoherent sequences
    Zhao, Feng
    Nielsen, Jon-Fredrik
    Swanson, Scott D.
    Fessler, Jeffrey A.
    Noll, Douglas C.
    MAGNETIC RESONANCE IN MEDICINE, 2015, 74 (03) : 739 - 746
  • [3] An MR fingerprinting approach for quantitative inhomogeneous magnetization transfer imaging
    West, Daniel J.
    Cruz, Gastao
    Teixeira, Rui P. A. G.
    Schneider, Torben
    Tournier, Jacques-Donald
    Hajnal, Joseph, V
    Prieto, Claudia
    Malik, Shaihan J.
    MAGNETIC RESONANCE IN MEDICINE, 2022, 87 (01) : 220 - 235
  • [4] Optimized balanced steady-state free precession magnetization transfer Imaging
    Bieri, O.
    Scheffler, K.
    MAGNETIC RESONANCE IN MEDICINE, 2007, 58 (03) : 511 - 518
  • [5] Microstructural correlates of 3D steady-state inhomogeneous magnetization transfer (ihMT) in the human brain white matter assessed by myelin water imaging and diffusion tensor imaging
    Ercan, Ece
    Varma, Gopal
    Maedler, Burkhard
    Dimitrov, Ivan E.
    Pinho, Marco C.
    Xi, Yin
    Wagner, Benjamin C.
    Davenport, Elizabeth M.
    Maldjian, Joseph A.
    Alsop, David C.
    Lenkinski, Robert E.
    Vinogradov, Elena
    MAGNETIC RESONANCE IN MEDICINE, 2018, 80 (06) : 2402 - 2414
  • [6] Optimization of acquisition parameters for cortical inhomogeneous magnetization transfer (ihMT) imaging using a rapid gradient echo readout
    Rowley, Christopher D. D.
    Campbell, Jennifer S. W.
    Leppert, Ilana R. R.
    Nelson, Mark C. C.
    Pike, G. Bruce
    Tardif, Christine L. L.
    MAGNETIC RESONANCE IN MEDICINE, 2023, 90 (05) : 1762 - 1775
  • [7] INHOMOGENEOUS STEADY-STATE PROBLEM OF COMPLEX HEAT TRANSFER
    Chebotarev, Alexander Yu.
    Grenkin, Gleb V.
    Kovtanyuk, Andrey E.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (06): : 2511 - 2519
  • [8] A strategy to reduce the sensitivity of inhomogeneous magnetization transfer (ihMT) imaging to radiofrequency transmit field variations at 3 T
    Soustelle, Lucas
    Troalen, Thomas
    Hertanu, Andreea
    Mchinda, Samira
    Ranjeva, Jean-Philippe
    Guye, Maxime
    Varma, Gopal
    Alsop, David C.
    Duhamel, Guillaume
    Girard, Olivier M.
    MAGNETIC RESONANCE IN MEDICINE, 2022, 87 (03) : 1346 - 1359
  • [9] Steady State Free Precession Magnetization Transfer Imaging
    Bieri, Oliver
    Mamisch, Tallas C.
    Trattnig, Siegfried
    Scheffler, Klaus
    MAGNETIC RESONANCE IN MEDICINE, 2008, 60 (05) : 1261 - 1266
  • [10] Inhomogeneous magnetization transfer imaging: Concepts and directions for further development
    Alsop, David C.
    Ercan, Ece
    Girard, Olivier M.
    Mackay, Alex L.
    Michal, Carl A.
    Varma, Gopal
    Vinogradov, Elena
    Duhamel, Guillaume
    NMR IN BIOMEDICINE, 2023, 36 (06)