On the Estimation of Confidence Intervals for Binomial Population Proportions in Astronomy: The Simplicity and Superiority of the Bayesian Approach

被引:363
作者
Cameron, Ewan [1 ]
机构
[1] ETH, Swiss Fed Inst Technol, Dept Phys, CH-8093 Zurich, Switzerland
来源
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA | 2011年 / 28卷 / 02期
关键词
methods: data analysis; methods: statistical; STELLAR MASS; GALAXIES; LIMITS; FRACTION; NUMBERS; BARS;
D O I
10.1071/AS10046
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
I present a critical review of techniques for estimating confidence intervals on binomial population proportions inferred from success counts in small to intermediate samples. Population proportions arise frequently as quantities of interest in astronomical research; for instance, in studies aiming to constrain the bar fraction, active galactic nucleus fraction, supermassive black hole fraction, merger fraction, or red sequence fraction from counts of galaxies exhibiting distinct morphological features or stellar populations. However, two of the most widely-used techniques for estimating binomial confidence intervals - the 'normal approximation' and the Clopper & Pearson approach - are liable to misrepresent the degree of statistical uncertainty present under sampling conditions routinely encountered in astronomical surveys, leading to an ineffective use of the experimental data (and, worse, an inefficient use of the resources expended in obtaining that data). Hence, I provide here an overview of the fundamentals of binomial statistics with two principal aims: (I) to reveal the ease with which (Bayesian) binomial confidence intervals with more satisfactory behaviour may be estimated from the quantiles of the beta distribution using modern mathematical software packages (e. g. R, MATLAB, MATHEMATICA, IDL, PYTHON); and (II) to demonstrate convincingly the major flaws of both the 'normal approximation' and the Clopper & Pearson approach for error estimation.
引用
收藏
页码:128 / 139
页数:12
相关论文
共 26 条
  • [1] Approximate is better than "exact" for interval estimation of binomial proportions
    Agresti, A
    Coull, BA
    [J]. AMERICAN STATISTICIAN, 1998, 52 (02) : 119 - 126
  • [2] [Anonymous], 2003, Bayesian Data Analysis
  • [3] Galaxy bimodality versus stellar mass and environment
    Baldry, I. K.
    Balogh, M. L.
    Bower, R. G.
    Glazebrook, K.
    Nichol, R. C.
    Bamford, S. P.
    Budavari, T.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2006, 373 (02) : 469 - 483
  • [4] Brown LD, 2002, ANN STAT, V30, P160
  • [5] Interval estimation for a binomial proportion - Comment - Rejoinder
    Brown, LD
    Cai, TT
    DasGupta, A
    Agresti, A
    Coull, BA
    Casella, G
    Corcoran, C
    Mehta, C
    Ghosh, M
    Santner, TJ
    Brown, LD
    Cai, TT
    DasGupta, A
    [J]. STATISTICAL SCIENCE, 2001, 16 (02) : 101 - 133
  • [6] Binarity in brown dwarfs:: T dwarf binaries discovered with the Hubble Space Telescope Wide Field Planetary Camera 2
    Burgasser, AJ
    Kirkpatrick, JD
    Reid, IN
    Brown, ME
    Miskey, CL
    Gizis, JE
    [J]. ASTROPHYSICAL JOURNAL, 2003, 586 (01) : 512 - 526
  • [7] Bars in early- and late-type discs in COSMOS
    Cameron, E.
    Carollo, C. M.
    Oesch, P.
    Aller, M. C.
    Bschorr, T.
    Cerulo, P.
    Aussel, H.
    Capak, P.
    Le Floc'h, E.
    Ilbert, O.
    Kneib, J. -P.
    Koekemoer, A.
    Leauthaud, A.
    Lilly, S. J.
    Massey, R.
    McCracken, H. J.
    Rhodes, J.
    Salvato, M.
    Sanders, D. B.
    Scoville, N.
    Sheth, K.
    Taniguchi, Y.
    Thompson, D.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 409 (01) : 346 - 354
  • [8] The use of confidence or fiducial limits illustrated in the case of the binomial.
    Clopper, CJ
    Pearson, ES
    [J]. BIOMETRIKA, 1934, 26 : 404 - 413
  • [9] The structures of distant galaxies -: I.: Galaxy structures and the merger rate to z ∼ 3 in the Hubble Ultra-Deep Field
    Conselice, Christopher J.
    Rajgor, Sheena
    Myers, Robert
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2008, 386 (02) : 909 - 927
  • [10] COUSINS RD, 2009, NIM, V612, P388