Explicit multi-frequency symmetric extended RKN integrators for solving multi-frequency and multidimensional oscillatory reversible systems

被引:5
作者
Wang, Bin [1 ]
Wu, Xinyuan [2 ]
机构
[1] Qingdao Univ Sci & Technol, Sch Math & Phys, Qingdao 266061, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
关键词
Explicit multi-frequency symmetric ERKN integrators; Multi-frequency and multidimensional oscillatory systems; Reversible systems; KUTTA-NYSTROM METHODS; NUMERICAL-INTEGRATION; ENERGY-CONSERVATION; ERKN INTEGRATORS; ARKN METHODS; STABILITY; PAIR;
D O I
10.1007/s10092-014-0114-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies explicit multi-frequency symmetric extended Runge-Kutta-Nystrom (ERKN) integrators tailored to numerically computing the multi-frequency and multidimensional oscillatory reversible second-order differential equations . We establish the symmetry conditions in a simplified way for multi-frequency ERKN integrators. Five explicit multi-frequency symmetric ERKN integrators are derived based on the simplified symmetry conditions. The arbitrary high-order explicit multi-frequency symmetric ERKN integrators can be achieved by the application of the symmetric composition. The stability and phase properties of the new integrators are discussed. Five numerical experiments are carried out and the numerical results demonstrate the remarkable numerical behavior of the new explicit multi-frequency symmetric integrators when applied to the multi-frequency and multidimensional oscillatory reversible second-order differential equations.
引用
收藏
页码:207 / 231
页数:25
相关论文
共 29 条
[1]   Symmetric and symplectic ERKN methods for oscillatory Hamiltonian systems [J].
Chen, Zhaoxia ;
You, Xiong ;
Shi, Wei ;
Liu, Zhongli .
COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (01) :86-98
[2]   Numerical energy conservation for multi-frequency oscillatory differential equations [J].
Cohen, D ;
Hairer, E ;
Lubich, C .
BIT NUMERICAL MATHEMATICS, 2005, 45 (02) :287-305
[3]   A new pair of explicit ARKN methods for the numerical integration of general perturbed oscillators [J].
Fang, Yonglei ;
Wu, Xinyuan .
APPLIED NUMERICAL MATHEMATICS, 2007, 57 (02) :166-175
[4]   A 5(3) pair of explicit ARKN methods for the numerical integration of perturbed oscillators [J].
Franco, JM .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 161 (02) :283-293
[5]   Runge-Kutta-Nystrom methods adapted to the numerical integration of perturbed oscillators [J].
Franco, JM .
COMPUTER PHYSICS COMMUNICATIONS, 2002, 147 (03) :770-787
[6]   New methods for oscillatory problems based on classical code [J].
García, A ;
Martín, P ;
González, AB .
APPLIED NUMERICAL MATHEMATICS, 2002, 42 (1-3) :141-157
[7]   Long-time-step methods for oscillatory differential equations [J].
Garcia-Archilla, B ;
Sanz-Serna, JM ;
Skeel, RD .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (03) :930-963
[8]   A new family of Runge-Kutta type methods for the numerical integration of perturbed oscillators [J].
González, AB ;
Martín, P ;
Farto, JM .
NUMERISCHE MATHEMATIK, 1999, 82 (04) :635-646
[9]   Long-time energy conservation of numerical methods for oscillatory differential equations [J].
Hairer, E ;
Lubich, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (02) :414-441
[10]  
Hairer E., 2006, Geometric numerical integration, Vsecond, DOI [DOI 10.1007/3-540-30666-88, 10.1007/3-540-30666-8]