Curve Registration of Functional Data for Approximate Bayesian Computation
被引:0
作者:
Ebert, Anthony
论文数: 0引用数: 0
h-index: 0
机构:
Queensland Univ Technol, Math & Stat Med Sci, Brisbane, Qld 4000, Australia
ARC Ctr Excellence Math & Stat Frontiers ACEMS, Parkville, Vic 3052, AustraliaQueensland Univ Technol, Math & Stat Med Sci, Brisbane, Qld 4000, Australia
Ebert, Anthony
[1
,2
]
Mengersen, Kerrie
论文数: 0引用数: 0
h-index: 0
机构:
Queensland Univ Technol, Math & Stat Med Sci, Brisbane, Qld 4000, Australia
ARC Ctr Excellence Math & Stat Frontiers ACEMS, Parkville, Vic 3052, AustraliaQueensland Univ Technol, Math & Stat Med Sci, Brisbane, Qld 4000, Australia
Mengersen, Kerrie
[1
,2
]
Ruggeri, Fabrizio
论文数: 0引用数: 0
h-index: 0
机构:
ARC Ctr Excellence Math & Stat Frontiers ACEMS, Parkville, Vic 3052, Australia
CNR, Ist Matemat Appl & Tecnol Informat, I-20133 Milan, ItalyQueensland Univ Technol, Math & Stat Med Sci, Brisbane, Qld 4000, Australia
Ruggeri, Fabrizio
[2
,3
]
Wu, Paul
论文数: 0引用数: 0
h-index: 0
机构:
Queensland Univ Technol, Math & Stat Med Sci, Brisbane, Qld 4000, Australia
ARC Ctr Excellence Math & Stat Frontiers ACEMS, Parkville, Vic 3052, AustraliaQueensland Univ Technol, Math & Stat Med Sci, Brisbane, Qld 4000, Australia
Wu, Paul
[1
,2
]
机构:
[1] Queensland Univ Technol, Math & Stat Med Sci, Brisbane, Qld 4000, Australia
[2] ARC Ctr Excellence Math & Stat Frontiers ACEMS, Parkville, Vic 3052, Australia
Approximate Bayesian computation is a likelihood-free inference method which relies on comparing model realisations to observed data with informative distance measures. We obtain functional data that are not only subject to noise along their y axis but also to a random warping along their x axis, which we refer to as the time axis. Conventional distances on functions, such as the L-2 distance, are not informative under these conditions. The Fisher-Rao metric, previously generalised from the space of probability distributions to the space of functions, is an ideal objective function for aligning one function to another by warping the time axis. We assess the usefulness of alignment with the Fisher-Rao metric for approximate Bayesian computation with four examples: two simulation examples, an example about passenger flow at an international airport, and an example of hydrological flow modelling. We find that the Fisher-Rao metric works well as the objective function to minimise for alignment; however, once the functions are aligned, it is not necessarily the most informative distance for inference. This means that likelihood-free inference may require two distances: one for alignment and one for parameter inference.
机构:
Harvard Univ, Cambridge, MA 02138 USAHarvard Univ, Cambridge, MA 02138 USA
Bernton, Espen
Jacob, Pierre E.
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, Cambridge, MA 02138 USAHarvard Univ, Cambridge, MA 02138 USA
Jacob, Pierre E.
Gerber, Mathieu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bristol, Bristol, Avon, EnglandHarvard Univ, Cambridge, MA 02138 USA
Gerber, Mathieu
Robert, Christian P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Rech Paris Sci & Lettres, Univ Paris Dauphine, CEREMADE, Paris, France
Univ Warwick, Coventry, W Midlands, EnglandHarvard Univ, Cambridge, MA 02138 USA
机构:
Univ Melbourne, Dept Math & Stat, Melbourne, Vic 3010, Australia
Univ Calif San Diego, Dept Stat, San Diego, CA USAUniv Melbourne, Dept Math & Stat, Melbourne, Vic 3010, Australia
机构:
Harvard Univ, Cambridge, MA 02138 USAHarvard Univ, Cambridge, MA 02138 USA
Bernton, Espen
Jacob, Pierre E.
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, Cambridge, MA 02138 USAHarvard Univ, Cambridge, MA 02138 USA
Jacob, Pierre E.
Gerber, Mathieu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bristol, Bristol, Avon, EnglandHarvard Univ, Cambridge, MA 02138 USA
Gerber, Mathieu
Robert, Christian P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Rech Paris Sci & Lettres, Univ Paris Dauphine, CEREMADE, Paris, France
Univ Warwick, Coventry, W Midlands, EnglandHarvard Univ, Cambridge, MA 02138 USA
机构:
Univ Melbourne, Dept Math & Stat, Melbourne, Vic 3010, Australia
Univ Calif San Diego, Dept Stat, San Diego, CA USAUniv Melbourne, Dept Math & Stat, Melbourne, Vic 3010, Australia