Scalable Semi-Supervised Aggregation of Classifiers

被引:0
|
作者
Balsubramani, Akshay [1 ]
Freund, Yoav [1 ]
机构
[1] Univ Calif San Diego, San Diego, CA 92093 USA
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015) | 2015年 / 28卷
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present and empirically evaluate an efficient algorithm that learns to aggregate the predictions of an ensemble of binary classifiers. The algorithm uses the structure of the ensemble predictions on unlabeled data to yield significant performance improvements. It does this without making assumptions on the structure or origin of the ensemble, without parameters, and as scalably as linear learning. We empirically demonstrate these performance gains with random forests.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Semi-supervised Gaussian Process Classifiers
    Sindhwani, Vikas
    Chu, Wei
    Keerthi, S. Sathiya
    20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 1059 - 1064
  • [2] Semi-supervised ranking aggregation
    Chen, Shouchun
    Wang, Fei
    Song, Yangqiu
    Zhang, Changshui
    INFORMATION PROCESSING & MANAGEMENT, 2011, 47 (03) : 415 - 425
  • [3] Using semi-supervised classifiers for credit scoring
    Kennedy, K.
    Mac Namee, B.
    Delany, S. J.
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2013, 64 (04) : 513 - 529
  • [4] Approaches to semi-supervised learning of fuzzy classifiers
    Klose, A
    KI 2003: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2003, 2821 : 436 - 449
  • [5] Semi-supervised Local Aggregation Methodology
    Azimifar, Marzieh
    Heidarzadegan, Ali
    Nemati, Yasser
    Manteghi, Sajad
    Parvin, Hamid
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2015, PT IV, 2015, 9158 : 233 - 245
  • [6] Semi-Supervised Hashing for Scalable Image Retrieval
    Wang, Jun
    Kumar, Sanjiv
    Chang, Shih-Fu
    2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 3424 - 3431
  • [7] Supervised and semi-supervised classifiers for the detection of flood-prone areas
    Giorgio Gnecco
    Rita Morisi
    Giorgio Roth
    Marcello Sanguineti
    Angela Celeste Taramasso
    Soft Computing, 2017, 21 : 3673 - 3685
  • [8] Semi-supervised Instance Matching Using Boosted Classifiers
    Kejriwa, Mayank
    Miranker, Daniel P.
    SEMANTIC WEB: LATEST ADVANCES AND NEW DOMAINS, ESWC 2015, 2015, 9088 : 388 - 402
  • [9] Supervised and semi-supervised classifiers for the detection of flood-prone areas
    Gnecco, Giorgio
    Morisi, Rita
    Roth, Giorgio
    Sanguineti, Marcello
    Taramasso, Angela Celeste
    SOFT COMPUTING, 2017, 21 (13) : 3673 - 3685
  • [10] Electric network classifiers for semi-supervised learning on graphs
    Hirai, Hiroshi
    Murota, Kazuo
    Rikitoku, Masaki
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF JAPAN, 2007, 50 (03) : 219 - 232