Design Features to Accelerate the Higher-Order Assembly of DNA Origami on Membranes

被引:2
作者
Qutbuddin, Yusuf [1 ]
Krohn, Jan-Hagen [1 ,2 ]
Bruggenthies, Gereon A. [1 ]
Stein, Johannes [1 ]
Gavrilovic, Svetozar [1 ]
Stehr, Florian [1 ]
Schwille, Petra [1 ]
机构
[1] Max Planck Inst Biochem, Dept Cellular & Mol Biophys, D-82152 Martinsried, Germany
[2] Exzellenzcluster ORIGINS, D-85748 Garching, Germany
关键词
SUPERRESOLUTION MICROSCOPY; KINETICS; NANOSTRUCTURES; LOCALIZATION;
D O I
10.1021/acs.jpcb.1c07694
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanotechnology often exploits DNA origami nanostructures assembled into even larger superstructures up to micrometer sizes with nanometer shape precision. However, large-scale assembly of such structures is very time-consuming. Here, we investigated the efficiency of superstructure assembly on surfaces using indirect cross-linking through low-complexity connector strands binding staple strand extensions, instead of connector strands binding to scaffold loops. Using single-molecule imaging techniques, including fluorescence microscopy and atomic force microscopy, we show that low sequence complexity connector strands allow formation of DNA origami superstructures on lipid membranes, with an order-of magnitude enhancement in the assembly speed of superstructures. A number of effects, including suppression of DNA hairpin formation, high local effective binding site concentration, and multivalency are proposed to contribute to the acceleration. Thus, the use of low-complexity sequences for DNA origami higher-order assembly offers a very simple but efficient way of improving throughput in DNA origami design.
引用
收藏
页码:13181 / 13191
页数:11
相关论文
共 39 条
[31]  
Tikhomirov G, 2017, NAT NANOTECHNOL, V12, P251, DOI [10.1038/nnano.2016.256, 10.1038/NNANO.2016.256]
[32]  
Voigt NV, 2010, NAT NANOTECHNOL, V5, P200, DOI [10.1038/nnano.2010.5, 10.1038/NNANO.2010.5]
[33]   Three-Dimensional Localization of Single Molecules for Super Resolution Imaging and Single-Particle Tracking [J].
von Diezmann, Alex ;
Shechtman, Yoav ;
Moerner, W. E. .
CHEMICAL REVIEWS, 2017, 117 (11) :7244-7275
[34]   The Beauty and Utility of DNA Origami [J].
Wang, Pengfei ;
Meyer, Travis A. ;
Pan, Victor ;
Dutta, Palash K. ;
Ke, Yonggang .
CHEM, 2017, 2 (03) :359-382
[35]   Sub-100-nm metafluorophores with digitally tunable optical properties self-assembled from DNA [J].
Woehrstein, Johannes B. ;
Strauss, Maximilian T. ;
Ong, Luvena L. ;
Wei, Bryan ;
Zhang, David Y. ;
Jungmann, Ralf ;
Yin, Peng .
SCIENCE ADVANCES, 2017, 3 (06)
[36]   Self-assembly of two-dimensional DNA origami lattices using cation-controlled surface diffusion [J].
Woo, Sungwook ;
Rothemund, Paul W. K. .
NATURE COMMUNICATIONS, 2014, 5
[37]  
Woo S, 2011, NAT CHEM, V3, P620, DOI [10.1038/NCHEM.1070, 10.1038/nchem.1070]
[38]   NUPACK: Analysis and Design of Nucleic Acid Systems [J].
Zadeh, Joseph N. ;
Steenberg, Conrad D. ;
Bois, Justin S. ;
Wolfe, Brian R. ;
Pierce, Marshall B. ;
Khan, Asif R. ;
Dirks, Robert M. ;
Pierce, Niles A. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2011, 32 (01) :170-173
[39]   Kinetics and Thermodynamics of Watson-Crick Base Pairing Driven DNA Origami Dimerization [J].
Zenk, John ;
Tuntivate, Chanon ;
Schulman, Rebecca .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (10) :3346-3354