Design Features to Accelerate the Higher-Order Assembly of DNA Origami on Membranes

被引:2
作者
Qutbuddin, Yusuf [1 ]
Krohn, Jan-Hagen [1 ,2 ]
Bruggenthies, Gereon A. [1 ]
Stein, Johannes [1 ]
Gavrilovic, Svetozar [1 ]
Stehr, Florian [1 ]
Schwille, Petra [1 ]
机构
[1] Max Planck Inst Biochem, Dept Cellular & Mol Biophys, D-82152 Martinsried, Germany
[2] Exzellenzcluster ORIGINS, D-85748 Garching, Germany
关键词
SUPERRESOLUTION MICROSCOPY; KINETICS; NANOSTRUCTURES; LOCALIZATION;
D O I
10.1021/acs.jpcb.1c07694
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanotechnology often exploits DNA origami nanostructures assembled into even larger superstructures up to micrometer sizes with nanometer shape precision. However, large-scale assembly of such structures is very time-consuming. Here, we investigated the efficiency of superstructure assembly on surfaces using indirect cross-linking through low-complexity connector strands binding staple strand extensions, instead of connector strands binding to scaffold loops. Using single-molecule imaging techniques, including fluorescence microscopy and atomic force microscopy, we show that low sequence complexity connector strands allow formation of DNA origami superstructures on lipid membranes, with an order-of magnitude enhancement in the assembly speed of superstructures. A number of effects, including suppression of DNA hairpin formation, high local effective binding site concentration, and multivalency are proposed to contribute to the acceleration. Thus, the use of low-complexity sequences for DNA origami higher-order assembly offers a very simple but efficient way of improving throughput in DNA origami design.
引用
收藏
页码:13181 / 13191
页数:11
相关论文
共 39 条
[1]  
[Anonymous], 2021, NAT REV METHODS PRIM
[2]   Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP [J].
Biteen, Julie S. ;
Thompson, Michael A. ;
Tselentis, Nicole K. ;
Bowman, Grant R. ;
Shapiro, Lucy ;
Moerner, W. E. .
NATURE METHODS, 2008, 5 (11) :947-949
[3]   Synthesis of DNA Origami Scaffolds: Current and Emerging Strategies [J].
Bush, Joshua ;
Singh, Shrishti ;
Vargas, Merlyn ;
Oktay, Esra ;
Hu, Chih-Hsiang ;
Veneziano, Remi .
MOLECULES, 2020, 25 (15)
[4]   Self-assembly of DNA into nanoscale three-dimensional shapes [J].
Douglas, Shawn M. ;
Dietz, Hendrik ;
Liedl, Tim ;
Hoegberg, Bjoern ;
Graf, Franziska ;
Shih, William M. .
NATURE, 2009, 459 (7245) :414-418
[5]  
Edelstein Arthur D, 2014, J Biol Methods, V1
[6]   Custom-Size, Functional, and Durable DNA Origami with Design-Specific Scaffolds [J].
Engelhardt, Floris A. S. ;
Praetorius, Florian ;
Wachauf, Christian H. ;
Brueggenthies, Gereon ;
Kohler, Fabian ;
Kick, Benjamin ;
Kadletz, Karoline L. ;
Phuong Nhi Pham ;
Behler, Karl L. ;
Gerling, Thomas ;
Dietz, Hendrik .
ACS NANO, 2019, 13 (05) :5015-5027
[7]   Membrane sculpting by curved DNA origami scaffolds [J].
Franquelim, Henri G. ;
Khmelinskaia, Alena ;
Sobczak, Jean-Philippe ;
Dietz, Hendrik ;
Schwille, Petra .
NATURE COMMUNICATIONS, 2018, 9
[8]   Kinetics of DNA Tile Dimerization [J].
Jiang, Shuoxing ;
Yan, Hao ;
Liu, Yan .
ACS NANO, 2014, 8 (06) :5826-5832
[9]   DNA origami-based nanoribbons: assembly, length distribution, and twist [J].
Jungmann, Ralf ;
Scheible, Max ;
Kuzyk, Anton ;
Pardatscher, Guenther ;
Castro, Carlos E. ;
Simmel, Friedrich C. .
NANOTECHNOLOGY, 2011, 22 (27)
[10]   Single-Molecule Kinetics and Super-Resolution Microscopy by Fluorescence Imaging of Transient Binding on DNA Origami [J].
Jungmann, Ralf ;
Steinhauer, Christian ;
Scheible, Max ;
Kuzyk, Anton ;
Tinnefeld, Philip ;
Simmel, Friedrich C. .
NANO LETTERS, 2010, 10 (11) :4756-4761