Hopf cyclic cohomology and transverse characteristic classes

被引:10
作者
Moscovici, Henri [1 ]
Rangipour, Bahram [2 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[2] Univ New Brunswick, Dept Math & Stat, Fredericton, NB E3B 5A3, Canada
基金
美国国家科学基金会;
关键词
Hopf algebras; Cyclic cohomology; Foliations; Characteristic classes; ALGEBRAS; HOMOLOGY; THEOREM;
D O I
10.1016/j.aim.2011.02.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We refine the cyclic cohomological apparatus for computing the Hopf cyclic cohomology of the Hopf algebras associated to infinite primitive Cartan-Lie pseudogroups, and for the transfer of their characteristic classes to foliations. The main novel feature is the precise identification as a Hopf cyclic complex of the image of the canonical homomorphism from the Gelfand-Fuks complex to the Bott complex for equivariant cohomology. This provides a convenient new model for the Hopf cyclic cohomology of the geometric Hopf algebras, which allows for an efficient transport of the Hopf cyclic classes via characteristic homomorphisms. We illustrate the latter aspect by indicating how to realize the universal Hopf cyclic Chern classes in terms of explicit cocycles in the cyclic cohomology of etale foliation groupoids. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:654 / 729
页数:76
相关论文
共 30 条
[1]  
[Anonymous], 1982, GRAD TEXTS MATH
[2]  
[Anonymous], 1994, NONCOMMUTATIVE GEOME
[3]   CHARACTERISTIC CLASSES OF GAMMA-FOLIATIONS [J].
BOTT, R ;
HAEFLIGER, A .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 78 (06) :1039-1044
[4]  
Bott R., 1978, DIFFERENTIAL TOPOLOG, P25, DOI [10.1007/BFb0063501, DOI 10.1007/BFB0063501]
[5]  
Cartan E., 1909, Ann. Sci. Ecole Norm. Sup., V26, P93, DOI 10.24033/asens.603
[6]   Cyclic cohomology and Hopf algebras [J].
Connes, A ;
Moscovici, H .
LETTERS IN MATHEMATICAL PHYSICS, 1999, 48 (01) :97-108
[7]   Hopf algebras, cyclic cohomology and the transverse index theorem [J].
Connes, A ;
Moscovici, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 198 (01) :199-246
[8]  
CONNES A, 1983, CR ACAD SCI I-MATH, V296, P953
[9]  
CONNES A, ARXIVMATH0505475V1MA
[10]  
CONNES A, 2001, MONOGRAPHIE ENSEIGNE, V0038, P00217