Asymptotic compactness of global trajectories generated by the Navier-Stokes equations of a compressible fluid

被引:19
作者
Feireisl, E [1 ]
Petzeltová, H [1 ]
机构
[1] Acad Sci Czech Republ, Inst Math, CR-11567 Prague 1, Czech Republic
关键词
D O I
10.1006/jdeq.2000.3935
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:390 / 409
页数:20
相关论文
共 11 条
[1]   On compactness of solutions to the Navier-Stokes equations of compressible flow [J].
Feireisl, E ;
Petzeltová, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 163 (01) :57-75
[2]   On integrability up to the boundary of the weak solutions of the Navier-Stokes equations of compressible flow [J].
Feireisl, E ;
Petzeltová, H .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2000, 25 (3-4) :755-767
[3]  
FEIREISL E, UNPUB BOUNDED ABSORB
[4]  
FEIRESL E, IN PRESS NODEA NONLI
[5]   Compact attractors for the Navier-Stokes equations of one-dimensional, compressible flow [J].
Hoff, D ;
Ziane, M .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (03) :239-244
[6]  
Hoff D, 2000, INDIANA U MATH J, V49, P843
[7]  
Lions P.-L., 1996, Mathematical Topics in Fluid Dynamics, Vol. 1, Incompressible Models, V1
[8]  
Lions P.-L., 1998, MATH TOPICS FLUID DY, V2
[9]  
LIONS PL, 1993, CR ACAD SCI I-MATH, V317, P115
[10]   Bounds on the density for compressible isentropic Navier-Stokes equations with Dirichlet boundary conditions [J].
Lions, PL .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (08) :659-662