Dimensionality Reduction of Human Gait for Prosthetic Control

被引:13
作者
Boe, David [1 ]
Portnova-Fahreeva, Alexandra A. [1 ]
Sharma, Abhishek [1 ]
Rai, Vijeth [2 ]
Sie, Astrini [2 ]
Preechayasomboon, Pornthep [1 ]
Rombokas, Eric [1 ,2 ]
机构
[1] Univ Washington, Dept Mech Engn, Seattle, WA 98195 USA
[2] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA
来源
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY | 2021年 / 9卷
关键词
machine learning; kinematic; principal compenent analysis; autoencoder; gait; prosthesis; dimensionality; nonlinear;
D O I
10.3389/fbioe.2021.724626
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
We seek to use dimensionality reduction to simplify the difficult task of controlling a lower limb prosthesis. Though many techniques for dimensionality reduction have been described, it is not clear which is the most appropriate for human gait data. In this study, we first compare how Principal Component Analysis (PCA) and an autoencoder on poses (Pose-AE) transform human kinematics data during flat ground and stair walking. Second, we compare the performance of PCA, Pose-AE and a new autoencoder trained on full human movement trajectories (Move-AE) in order to capture the time varying properties of gait. We compare these methods for both movement classification and identifying the individual. These are key capabilities for identifying useful data representations for prosthetic control. We first find that Pose-AE outperforms PCA on dimensionality reduction by achieving a higher Variance Accounted For (VAF) across flat ground walking data, stairs data, and undirected natural movements. We then find in our second task that Move-AE significantly outperforms both PCA and Pose-AE on movement classification and individual identification tasks. This suggests the autoencoder is more suitable than PCA for dimensionality reduction of human gait, and can be used to encode useful representations of entire movements to facilitate prosthetic control tasks.</p>
引用
收藏
页数:10
相关论文
共 30 条
[1]  
[Anonymous], 2011, ACM T INTEL SYST TEC, DOI DOI 10.1145/1961189.1961199
[2]   Design and clinical implementation of an open-source bionic leg [J].
Azocar, Alejandro F. ;
Mooney, Luke M. ;
Duval, Jean-Francois ;
Simon, Ann M. ;
Hargrove, Levi J. ;
Rouse, Elliott J. .
NATURE BIOMEDICAL ENGINEERING, 2020, 4 (10) :941-953
[3]   Gait-Based Machine Learning for Classifying Patients with Different Types of Mild Cognitive Impairment [J].
Chen, Pei-Hao ;
Lien, Chieh-Wen ;
Wu, Wen-Chun ;
Lee, Lu-Shan ;
Shaw, Jin-Siang .
JOURNAL OF MEDICAL SYSTEMS, 2020, 44 (06)
[4]   Principal component models of knee kinematics and kinetics: Normal vs. pathological gait patterns [J].
Deluzio, KJ ;
Wyss, UP ;
Zee, B ;
Costigan, PA ;
Sorbie, C .
HUMAN MOVEMENT SCIENCE, 1997, 16 (2-3) :201-217
[5]  
Devlin J., 2018, CORR
[6]   Motion Inference Using Sparse Inertial Sensors, Self-Supervised Learning, and a New Dataset of Unscripted Human Motion [J].
Geissinger, Jack H. ;
Asbeck, Alan T. .
SENSORS, 2020, 20 (21) :1-30
[7]  
Graves A, 2012, STUD COMPUT INTELL, V385, P1, DOI [10.1007/978-3-642-24797-2, 10.1162/neco.1997.9.1.1]
[8]   An investigation of the spatio-temporal parameters of gait and margins of stability throughout adulthood [J].
Herssens, Nolan ;
van Criekinge, Tamaya ;
Saeys, Wim ;
Truijen, Steven ;
Vereeck, Luc ;
van Rompaey, Vincent ;
Hallemans, Ann .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2020, 17 (166)
[9]   Safety, energy efficiency, and cost efficacy of the C-Leg for transfemoral amputees: A review of the literature [J].
Highsmith, M. Jason ;
Kahle, Jason T. ;
Bongiorni, Dennis R. ;
Sutton, Bryce S. ;
Groer, Shirley ;
Kaufman, Kenton R. .
PROSTHETICS AND ORTHOTICS INTERNATIONAL, 2010, 34 (04) :362-377
[10]   A Comprehensive Survey of Deep Learning for Image Captioning [J].
Hossain, Md Zakir ;
Sohel, Ferdous ;
Shiratuddin, Mohd Fairuz ;
Laga, Hamid .
ACM COMPUTING SURVEYS, 2019, 51 (06)