Pliocene and Eocene provide best analogs for near-future climates

被引:329
作者
Burke, K. D. [1 ]
Williams, J. W. [2 ,3 ]
Chandler, M. A. [4 ,5 ]
Haywood, A. M. [6 ]
Lunt, D. J. [7 ]
Otto-Bliesner, B. L. [8 ]
机构
[1] Univ Wisconsin, Nelson Inst Environm Studies, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Geog, Madison, WI 53706 USA
[3] Univ Wisconsin, Ctr Climat Res, Madison, WI 53706 USA
[4] Columbia Univ, Ctr Climate Syst Res, New York, NY 10025 USA
[5] NASA, Goddard Inst Space Studies, New York, NY 10025 USA
[6] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England
[7] Univ Bristol, Sch Geog Sci, Bristol BS8 1SS, Avon, England
[8] Natl Ctr Atmospher Res, Climate & Global Dynam Lab, Boulder, CO 80305 USA
关键词
climate change; climate analog; no analog; paleoclimate; planetary boundary; EXPERIMENTAL-DESIGN; MODEL; IMPACT; SIMULATIONS; TEMPERATURE; SENSITIVITY; INSIGHTS;
D O I
10.1073/pnas.1809600115
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
As the world warms due to rising greenhouse gas concentrations, the Earth systemmoves toward climate stateswithout societal precedent, challenging adaptation. Past Earth system states offer possible model systems for the warming world of the coming decades. These include the climate states of the Early Eocene (ca. 50 Ma), the Mid-Pliocene (3.3-3.0 Ma), the Last Interglacial (129-116 ka), the Mid-Holocene (6 ka), preindustrial (ca. 1850 CE), and the 20th century. Here, we quantitatively assess the similarity of future projected climate states to these six geohistorical benchmarks using simulations from the Hadley Centre Coupled Model Version 3 (HadCM3), the Goddard Institute for Space Studies Model E2-R (GISS), and the Community Climate System Model, Versions 3 and 4 (CCSM) Earth system models. Under the Representative Concentration Pathway 8.5 (RCP8.5) emission scenario, by 2030 CE, future climates most closely resemble Mid-Pliocene climates, and by 2150 CE, they most closely resemble Eocene climates. Under RCP4.5, climate stabilizes at Pliocene-like conditions by 2040 CE. Pliocene-like and Eocene-like climates emerge first in continental interiors and then expand outward. Geologically novel climates are uncommon in RCP4.5 (< 1%) but reach 8.7% of the globe under RCP8.5, characterized by high temperatures and precipitation. Hence, RCP4.5 is roughly equivalent to stabilizing at Pliocene-like climates, while unmitigated emission trajectories, such as RCP8.5, are similar to reversing millions of years of long-term cooling on the scale of a few human generations. Both the emergence of geologically novel climates and the rapid reversion to Eocene-like climates may be outside the range of evolutionary adaptive capacity.
引用
收藏
页码:13288 / 13293
页数:6
相关论文
共 58 条
[1]   Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate [J].
Anagnostou, Eleni ;
John, Eleanor H. ;
Edgar, Kirsty M. ;
Foster, Gavin L. ;
Ridgwell, Andy ;
Inglis, Gordon N. ;
Pancost, Richard D. ;
Lunt, Daniel J. ;
Pearson, Paul N. .
NATURE, 2016, 533 (7603) :380-+
[2]   High-resolution record of Northern Hemisphere climate extending into the last interglacial period [J].
Andersen, KK ;
Azuma, N ;
Barnola, JM ;
Bigler, M ;
Biscaye, P ;
Caillon, N ;
Chappellaz, J ;
Clausen, HB ;
DahlJensen, D ;
Fischer, H ;
Flückiger, J ;
Fritzsche, D ;
Fujii, Y ;
Goto-Azuma, K ;
Gronvold, K ;
Gundestrup, NS ;
Hansson, M ;
Huber, C ;
Hvidberg, CS ;
Johnsen, SJ ;
Jonsell, U ;
Jouzel, J ;
Kipfstuhl, S ;
Landais, A ;
Leuenberger, M ;
Lorrain, R ;
Masson-Delmotte, V ;
Miller, H ;
Motoyama, H ;
Narita, H ;
Popp, T ;
Rasmussen, SO ;
Raynaud, D ;
Rothlisberger, R ;
Ruth, U ;
Samyn, D ;
Schwander, J ;
Shoji, H ;
Siggard-Andersen, ML ;
Steffensen, JP ;
Stocker, T ;
Sveinbjörnsdóttir, AE ;
Svensson, A ;
Takata, M ;
Tison, JL ;
Thorsteinsson, T ;
Watanabe, O ;
Wilhelms, F ;
White, JWC .
NATURE, 2004, 431 (7005) :147-151
[3]   Evaluation of climate models using palaeoclimatic data [J].
Braconnot, Pascale ;
Harrison, Sandy P. ;
Kageyama, Masa ;
Bartlein, Patrick J. ;
Masson-Delmotte, Valerie ;
Abe-Ouchi, Ayako ;
Otto-Bliesner, Bette ;
Zhao, Yan .
NATURE CLIMATE CHANGE, 2012, 2 (06) :417-424
[4]   State-dependent climate sensitivity in past warm climates and its implications for future climate projections [J].
Caballero, Rodrigo ;
Huber, Matthew .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (35) :14162-14167
[5]   A model-model and data-model comparison for the early Eocene hydrological cycle [J].
Carmichael, Matthew J. ;
Lunt, Daniel J. ;
Huber, Matthew ;
Heinemann, Malte ;
Kiehl, Jeffrey ;
LeGrande, Allegra ;
Loptson, Claire A. ;
Roberts, Chris D. ;
Sagoo, Navjit ;
Shields, Christine ;
Valdes, Paul J. ;
Winguth, Arne ;
Winguth, Cornelia ;
Pancost, Richard D. .
CLIMATE OF THE PAST, 2016, 12 (02) :455-481
[6]   Consequences of twenty-first-century policy for multi-millennial climate and sea-level change [J].
Clark, Peter U. ;
Shakun, Jeremy D. ;
Marcott, Shaun A. ;
Mix, Alan C. ;
Eby, Michael ;
Kulp, Scott ;
Levermann, Anders ;
Milne, Glenn A. ;
Pfister, Patrik L. ;
Santer, Benjamin D. ;
Schrag, Daniel P. ;
Solomon, Susan ;
Stocker, Thomas F. ;
Strauss, Benjamin H. ;
Weaver, Andrew J. ;
Winkelmann, Ricarda ;
Archer, David ;
Bard, Edouard ;
Goldner, Aaron ;
Lambeck, Kurt ;
Pierrehumbert, Raymond T. ;
Plattner, Gian-Kasper .
NATURE CLIMATE CHANGE, 2016, 6 (04) :360-369
[7]  
CROWLEY TJ, 1990, J CLIMATE, V3, P1282, DOI 10.1175/1520-0442(1990)003<1282:ATASGA>2.0.CO
[8]  
2
[9]   Quantifying the influence of global warming on unprecedented extreme climate events [J].
Diffenbaugh, Noah S. ;
Singh, Deepti ;
Mankin, Justin S. ;
Horton, Daniel E. ;
Swain, Daniel L. ;
Touma, Danielle ;
Charland, Allison ;
Liu, Yunjie ;
Haugen, Matz ;
Tsiang, Michael ;
Rajaratnam, Bala .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (19) :4881-4886
[10]   Probability of emergence of novel temperature regimes at different levels of cumulative carbon emissions [J].
Diffenbaugh, Noah S. ;
Charland, Allison .
FRONTIERS IN ECOLOGY AND THE ENVIRONMENT, 2016, 14 (08) :418-423