Connecting Software Reliability Growth Models to Software Defect Tracking

被引:6
作者
Nafreen, Maskura [1 ]
Luperon, Melanie [1 ]
Fiondella, Lance [1 ]
Nagaraju, Vidhyashree [2 ]
Shi, Ying [3 ]
Wandji, Thierry [4 ]
机构
[1] Univ Massachusetts Dartmouth, Dept Elect & Comp Engn, N Dartmouth, MA 02747 USA
[2] Univ Tulsa, Tandy Sch Comp Sci, Tulsa, OK 74104 USA
[3] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[4] Naval Air Syst Command, Cyber Warfare Detachment, Patuxent River, MD 20670 USA
来源
2020 IEEE 31ST INTERNATIONAL SYMPOSIUM ON SOFTWARE RELIABILITY ENGINEERING (ISSRE 2020) | 2020年
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
Software reliability; software reliability growth model; software defect lifecycle; defect resolution; Markov modeling; FAULT-DETECTION;
D O I
10.1109/ISSRE5003.2020.00022
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Traditional software reliability growth models only consider defect discovery data, yet the practical concern of software engineers is the removal of these defects. Most attempts to model the relationship between defect discovery and resolution have been restricted to differential equation-based models associated with these two activities. However, defect tracking databases offer a practical source of information on the defect lifecycle suitable for more complete reliability and performance models. This paper explicitly connects software reliability growth models to software defect tracking. Data from a NASA project has been employed to develop differential equation-based models of defect discovery and resolution as well as distributional and Markovian models of defect resolution. The states of the Markov model represent thirteen unique stages of the NASA software defect lifecycle. Both state transition probabilities and transition time distributions are computed from the defect database. Illustrations compare the predictive and computational performance of alternative approaches. The results suggest that the simple distributional approach achieves the best tradeoff between these two performance measures, but that enhanced data collection practices could improve the utility of the more advanced approaches and the inferences they enable.
引用
收藏
页码:138 / 147
页数:10
相关论文
共 31 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]  
Berchtold A, 2002, STAT SCI, V17, P328
[3]  
Chin-Yu Huang, 2004, Proceedings of the 28th Annual International Computer Software and Applications Conference. COMPSAC 2004, P186, DOI 10.1109/CMPSAC.2004.1342826
[4]   Debugging-workflow-aware software reliability growth analysis [J].
Cinque, Marcello ;
Cotroneo, Domenico ;
Pecchia, Antonio ;
Pietrantuono, Roberto ;
Russo, Stefano .
SOFTWARE TESTING VERIFICATION & RELIABILITY, 2017, 27 (07)
[5]  
Gertsbakh I., 2000, Reliability Theory: With Applications to Preventive Maintenance, DOI DOI 10.1103/PhysRevA.94.012106
[6]   TIME-DEPENDENT ERROR-DETECTION RATE MODEL FOR SOFTWARE RELIABILITY AND OTHER PERFORMANCE-MEASURES [J].
GOEL, AL ;
OKUMOTO, K .
IEEE TRANSACTIONS ON RELIABILITY, 1979, 28 (03) :206-211
[7]  
Gokhale SS, 1997, COMPASS '97 - ARE WE MAKING PROGRESS TOWARDS COMPUTER ASSURANCE?, P105, DOI 10.1109/CMPASS.1997.613262
[8]  
Gokhale SS, 2006, ISSRE 2006:17TH INTERNATIONAL SYMPOSIUM ON SOFTWARE RELIABILITY ENGINEERING, PROCEEDINGS, P353
[9]  
Jelinski Z., 1972, STAT COMPUTER PERFOR, P465, DOI DOI 10.1016/B978-0-12-266950-7.50028-1
[10]   SOFTWARE-RELIABILITY GROWTH-MODEL WITH ERROR DEPENDENCY [J].
KAPUR, PK ;
YOUNES, S .
MICROELECTRONICS AND RELIABILITY, 1995, 35 (02) :273-278