Bernstien type inequalities for polynomials with restricted zeros

被引:1
作者
Wali, S. L. [1 ]
Shah, W. M. [1 ]
机构
[1] Cent Univ Kashmir, Dept Math, Ganderbal, Jammu & Kashmir, India
关键词
Polynomials; Maximum modulus principle; Inequalities in the complex domain; Zeros;
D O I
10.1007/s41478-020-00296-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove results by using a simple but elegant techniques to improve and strengthen known generalisations and refinements of some widely known polynomial inequalities and thereby deduce useful corollaries from these results.
引用
收藏
页码:1083 / 1091
页数:9
相关论文
共 11 条
[1]  
Aziz A, 1989, J MATH ANAL APPL, V142, P1, DOI [10.1016/0022-247X(89)90370-3[4], DOI 10.1016/0022-247X(89)90370-3[4]]
[2]  
Bernstein S, 1930, CR HEBD ACAD SCI, V190, P338
[3]  
Dubinin VN., 2007, J.Math. Sci, V143, P3069, DOI DOI 10.1007/S10958-007-0192-4
[4]   NEW INEQUALITIES FOR POLYNOMIALS [J].
FRAPPIER, C ;
RAHMAN, QI ;
RUSCHEWEYH, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 288 (01) :69-99
[5]  
Lax P., 1944, B AM MATH SOC, V50, P509, DOI DOI 10.1090/S0002-9904-1944-08177-9
[6]  
Milovanovic G. V., 1994, Topics in polynomials: Extremal problems, Inequalities, Zeros, DOI [10.1142/1284, DOI 10.1142/1284]
[7]   SIMPLE PROOFS OF BERNSTEIN-TYPE INEQUALITIES [J].
MOHAPATRA, RN ;
OHARA, PJ ;
RODRIGUEZ, RS .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 102 (03) :629-632
[8]  
Polya G., 1998, PROBLEMS THEOREMS AN
[9]  
Rahman Q. I., 2002, Analytic Theory of Polynomials, DOI DOI 10.1093/bioinformatics/btp616
[10]  
Turan P., 1939, COMPOS MATH, V7, P89