Bernstien type inequalities for polynomials with restricted zeros

被引:1
作者
Wali, S. L. [1 ]
Shah, W. M. [1 ]
机构
[1] Cent Univ Kashmir, Dept Math, Ganderbal, Jammu & Kashmir, India
关键词
Polynomials; Maximum modulus principle; Inequalities in the complex domain; Zeros;
D O I
10.1007/s41478-020-00296-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove results by using a simple but elegant techniques to improve and strengthen known generalisations and refinements of some widely known polynomial inequalities and thereby deduce useful corollaries from these results.
引用
收藏
页码:1083 / 1091
页数:9
相关论文
共 11 条
  • [1] Aziz A, 1989, J MATH ANAL APPL, V142, P1, DOI [10.1016/0022-247X(89)90370-3[4], DOI 10.1016/0022-247X(89)90370-3[4]]
  • [2] Bernstein S, 1930, CR HEBD ACAD SCI, V190, P338
  • [3] Dubinin V. N., 2007, J. Math. Sci., V143, P3069, DOI DOI 10.1007/S10958-007-0192-4
  • [4] NEW INEQUALITIES FOR POLYNOMIALS
    FRAPPIER, C
    RAHMAN, QI
    RUSCHEWEYH, S
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 288 (01) : 69 - 99
  • [5] Lax P.D., 1944, Bull. Amer. Math. Soc., V50, P509
  • [6] Milovanovi G.V., 1994, Topics in Polynomials, Extremal Problems, Inequalities, Zeros, DOI [10.1142/1284, DOI 10.1142/1284]
  • [7] SIMPLE PROOFS OF BERNSTEIN-TYPE INEQUALITIES
    MOHAPATRA, RN
    OHARA, PJ
    RODRIGUEZ, RS
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 102 (03) : 629 - 632
  • [8] Polya G., 1998, Problems and theorems in analysis, I: Series, integral calculus, theory of functions
  • [9] Rahman Q. I., 2002, ANAL THEORY POLYNOMI
  • [10] Turan P., 1939, Compositio Math., V7, P89