Arithmetic Properties of m-ary Partitions Without Gaps
被引:2
作者:
Andrews, George E.
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Math, 104 McAllister Bldg, University Pk, PA 16802 USAPenn State Univ, Dept Math, 104 McAllister Bldg, University Pk, PA 16802 USA
Andrews, George E.
[1
]
Brietzke, Eduardo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio Grande do Sul, Inst Math, CP 15080, BR-91509900 Porto Alegre, RS, BrazilPenn State Univ, Dept Math, 104 McAllister Bldg, University Pk, PA 16802 USA
Brietzke, Eduardo
[2
]
Rodseth, Oystein J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bergen, Dept Math, Allegt 41, N-5007 Bergen, NorwayPenn State Univ, Dept Math, 104 McAllister Bldg, University Pk, PA 16802 USA
Rodseth, Oystein J.
[3
]
Sellers, James A.
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Math, 104 McAllister Bldg, University Pk, PA 16802 USAPenn State Univ, Dept Math, 104 McAllister Bldg, University Pk, PA 16802 USA
Sellers, James A.
[1
]
机构:
[1] Penn State Univ, Dept Math, 104 McAllister Bldg, University Pk, PA 16802 USA
[2] Univ Fed Rio Grande do Sul, Inst Math, CP 15080, BR-91509900 Porto Alegre, RS, Brazil
Motivated by recent work of Bessenrodt, Olsson, and Sellers on unique path partitions, we consider partitions of an integer n wherein the parts are all powers of a fixed integer and there are no "gaps" in the parts; that is, if is the largest part in a given partition, then also appears as a part in the partition for each . Our ultimate goal is to prove an infinite family of congruences modulo powers of m which are satisfied by these functions.