Maximum and Minimum Principles for Radionuclide Transport Calculations in Geological Radioactive Waste Repository: Comparison Between a Mixed Hybrid Finite Element Method and Finite Volume Element discretizations

被引:15
作者
Genty, Alain [1 ]
Le Potier, Christophe [1 ]
机构
[1] CEA Saclay, Commissariat Energie Atom, DEN SFME LSET DM2S, F-91191 Gif Sur Yvette, France
关键词
Radioactive waste disposal; Monotonicity; Mixed hybrid finite element; Finite volume; ANISOTROPIC DIFFUSION OPERATORS; MESHES; EQUATIONS; MONOTONICITY; SCHEMES;
D O I
10.1007/s11242-011-9724-y
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In the context of high-level radioactive waste repository simulations, specific waste repository system properties require the use of a highly heterogeneous and anisotropic diffusion tensors. Classical finite volume or mixed hybrid finite element schemes produce non-physical negative concentrations and therefore are unsuitable for simulations which couple transport and chemical reactivity models. In this article, the authors use a new finite volume scheme satisfying a minimum and maximum principle to solve the transport equations and demonstrate that this scheme avoids the negative concentration values generated by other schemes.
引用
收藏
页码:65 / 85
页数:21
相关论文
共 30 条
[1]   Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: Derivation of the methods [J].
Aavatsmark, I ;
Barkve, T ;
Boe, O ;
Mannseth, T .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (05) :1700-1716
[2]   The Andra Couplex 1 test case: Comparisons between finite-element, mixed hybrid finite element and finite volume element discretizations [J].
Bernard-Michel, G ;
Le Potier, C ;
Beccantini, A ;
Gounand, S ;
Chraibi, M .
COMPUTATIONAL GEOSCIENCES, 2004, 8 (02) :187-201
[3]   A second-order maximum principle preserving finite volume method for steady convection-diffusion problems [J].
Bertolazzi, E ;
Manzini, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) :2172-2199
[4]  
Brezzi F., 1991, Mixed and Hybrid Finite Element Methods, V15
[5]   Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes [J].
Burman, E ;
Ern, A .
COMPTES RENDUS MATHEMATIQUE, 2004, 338 (08) :641-646
[6]  
Ciarlet P. G., 1973, Computer Methods in Applied Mechanics and Engineering, V2, P17, DOI 10.1016/0045-7825(73)90019-4
[7]  
DABBENE F, 1998, P 10 INT C FIN EL FL
[8]  
de Marsily G., 1986, QUANTITATIVE HYDROGE
[9]   Hydrodynamic properties of the Callovo-Oxfordian formation in the East of the Paris Basin: comparison of results obtained through different approaches [J].
Delay, Jacques ;
Trouiller, Alain ;
Lavanchy, Jean-Marc .
COMPTES RENDUS GEOSCIENCE, 2006, 338 (12-13) :892-907
[10]  
GENTY A, 2006, P 16 COMP METH WAT R