On the Correlation of Critical Points and Angular Trispectrum for Random Spherical Harmonics

被引:2
作者
Cammarota, Valentina [1 ]
Marinucci, Domenico [2 ]
机构
[1] Sapienza Univ Rome, Dept Stat, Rome, Italy
[2] Univ Roma Tor Vergata, Dept Math, Rome, Italy
关键词
Random fields; Critical points; Wiener chaos expansion; Spherical harmonics; Berry's cancellation phenomenon; CENTRAL-LIMIT-THEOREM; NODAL LENGTH; RANDOM EIGENFUNCTIONS; RANDOM WAVES; FLUCTUATIONS; INTERSECTIONS; UNIVERSALITY; VARIANCE; NUMBER;
D O I
10.1007/s10959-021-01136-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove a Central Limit Theorem for the critical points of random spherical harmonics, in the high-energy limit. The result is a consequence of a deeper characterization of the total number of critical points, which are shown to be asymptotically fully correlated with the sample trispectrum, i.e. the integral of the fourth Hermite polynomial evaluated on the eigenfunctions themselves. As a consequence, the total number of critical points and the nodal length are fully correlated for random spherical harmonics, in the high-energy limit.
引用
收藏
页码:2269 / 2303
页数:35
相关论文
共 33 条
[1]   ON THE REAL ZEROS OF RANDOM TRIGONOMETRIC POLYNOMIALS WITH DEPENDENT COEFFICIENTS [J].
Angst, Juergen ;
Dalmao, Federico ;
Poly, Guillaume .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (01) :205-214
[2]   UNIVERSALITY OF THE NODAL LENGTH OF BIVARIATE RANDOM TRIGONOMETRIC POLYNOMIALS [J].
Angst, Juergen ;
Viet-Hung Pham ;
Poly, Guillaume .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (12) :8331-8357
[3]  
[Anonymous], 2007, Springer Monographs in Mathematics
[4]   Non universality for the variance of the number of real roots of random trigonometric polynomials [J].
Bally, Vlad ;
Caramellino, Lucia ;
Poly, Guillaume .
PROBABILITY THEORY AND RELATED FIELDS, 2019, 174 (3-4) :887-927
[5]   Planck-scale distribution of nodal length of arithmetic random waves [J].
Benatar, Jacques ;
Marinucci, Domenico ;
Wigman, Igor .
JOURNAL D ANALYSE MATHEMATIQUE, 2020, 141 (02) :707-749
[6]   Random Waves On T3: Nodal Area Variance and Lattice Point Correlations [J].
Benatar, Jacques ;
Maffucci, Riccardo W. .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (10) :3032-3075
[7]   Fluctuations of the total number of critical points of random spherical harmonics [J].
Cammarota, V. ;
Wigman, I. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2017, 127 (12) :3825-3869
[8]   FLUCTUATIONS OF THE EULER-POINCARE CHARACTERISTIC FOR RANDOM SPHERICAL HARMONICS [J].
Cammarota, V. ;
Marinucci, D. ;
Wigman, I. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (11) :4759-4775
[9]   A reduction principle for the critical values of random spherical harmonics [J].
Cammarota, Valentina ;
Marinucci, Domenico .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (04) :2433-2470
[10]   NODAL AREA DISTRIBUTION FOR ARITHMETIC RANDOM WAVES [J].
Cammarota, Valentina .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (05) :3539-3564