Instability and transition in an elementary porous medium

被引:17
作者
Chu, Xu [1 ]
Wu, Yongxiang [2 ]
Rist, Ulrich [2 ]
Weigand, Bernhard [1 ]
机构
[1] Univ Stuttgart, Inst Aerosp Thermodynam, Pfaffenwaldring 31, D-70569 Stuttgart, Germany
[2] Univ Stuttgart, Inst Aerodynam & Gas Dynam, Pfaffenwaldring 21, D-70569 Stuttgart, Germany
关键词
NAVIER-STOKES EQUATIONS; GLOBAL STABILITY; MACROSCOPIC TURBULENCE; FLOW; STEADY; GROWTH; DYNAMICS; WAKE;
D O I
10.1103/PhysRevFluids.5.044304
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Instability and transition in an elementary porous medium are investigated via global linear stability analysis and numerical simulation. The porous medium is presented by a representative elementary volume which consists of a staggered array of square cylinders. The stability analysis indicates the first critical Reynolds number at Re-cr approximate to 84. Two unstable modes are captured from the linear stability analysis: a two-dimensional oscillatory mode and a three-dimensional stationary mode. A series of analyses based on direct and adjoint methods is conducted on both the unstable modes. The energy analysis shows that lift-up and converging-flow effects are both responsible for the unstable modes. In the numerical simulation, the averaged fluctuation profiles exhibit spatial distributions similar to those of the perturbation kinetic energy from the three-dimensional mode, which confirms the prediction from the stability analysis. In addition, we observe stationary counterrotating streamwise vortices beginning at the subcritical Reynolds number, which is a consequence of lift-up instability.
引用
收藏
页数:25
相关论文
共 45 条
  • [1] From steady to unsteady laminar flow in model porous structures: an investigation of the first Hopf bifurcation
    Agnaou, M.
    Lasseux, D.
    Ahmadi, A.
    [J]. COMPUTERS & FLUIDS, 2016, 136 : 67 - 82
  • [2] Steady solutions of the Navier-Stokes equations by selective frequency damping
    Akervik, Espen
    Brandt, Luca
    Henningson, Dan S.
    Hoepffner, Jerome
    Marxen, Olaf
    Schlatter, Philipp
    [J]. PHYSICS OF FLUIDS, 2006, 18 (06)
  • [3] Matrix-Free Methods for the Stability and Control of Boundary Layers
    Bagheri, Shervin
    Akervik, Espen
    Brandt, Luca
    Henningson, Dan S.
    [J]. AIAA JOURNAL, 2009, 47 (05) : 1057 - 1068
  • [4] Direct optimal growth analysis for timesteppers
    Barkley, D.
    Blackburn, H. M.
    Sherwin, S. J.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2008, 57 (09) : 1435 - 1458
  • [5] Convective instability and transient growth in flow over a backward-facing step
    Blackburn, H. M.
    Barkley, D.
    Sherwin, S. J.
    [J]. JOURNAL OF FLUID MECHANICS, 2008, 603 : 271 - 304
  • [6] Stability and dynamics of the laminar wake past a slender blunt-based axisymmetric body
    Bohorquez, P.
    Sanmiguel-Rojas, E.
    Sevilla, A.
    Jimenez-Gonzalez, J. I.
    Martinez-Bazan, C.
    [J]. JOURNAL OF FLUID MECHANICS, 2011, 676 : 110 - 144
  • [7] Nektar plus plus : An open-source spectral/hp element framework
    Cantwell, C. D.
    Moxey, D.
    Comerford, A.
    Bolis, A.
    Rocco, G.
    Mengaldo, G.
    De Grazia, D.
    Yakovlev, S.
    Lombard, J. -E.
    Ekelschot, D.
    Jordi, B.
    Xu, H.
    Mohamied, Y.
    Eskilsson, C.
    Nelson, B.
    Vos, P.
    Biotto, C.
    Kirby, R. M.
    Sherwin, S. J.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2015, 192 : 205 - 219
  • [8] From h to p efficiently: Strategy selection for operator evaluation on hexahedral and tetrahedral elements
    Cantwell, C. D.
    Sherwin, S. J.
    Kirby, R. M.
    Kelly, P. H. J.
    [J]. COMPUTERS & FLUIDS, 2011, 43 (01) : 23 - 28
  • [9] Adjoint algorithms for the Navier-Stokes equations in the low Mach number limit
    Chandler, Gary J.
    Juniper, Matthew P.
    Nichols, Joseph W.
    Schmid, Peter J.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (04) : 1900 - 1916
  • [10] CHU X, 2018, PHYS FLUIDS, V30