Detection of Fermi arcs in Weyl semimetals through surface negative refraction

被引:9
作者
Chen, Guangze [1 ,2 ]
Zilberberg, Oded [1 ]
Chen, Wei [1 ,3 ,4 ,5 ]
机构
[1] Swiss Fed Inst Technol, Inst Theoret Phys, CH-8093 Zurich, Switzerland
[2] Aalto Univ, Dept Appl Phys, Espoo 02150, Finland
[3] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[4] Nanjing Univ, Sch Phys, Nanjing 210093, Peoples R China
[5] Nanjing Univ Aeronaut & Astronaut, Coll Sci, Nanjing 210016, Peoples R China
基金
瑞士国家科学基金会;
关键词
DISCOVERY; POINTS; NODES;
D O I
10.1103/PhysRevB.101.125407
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
One of the main features of Weyl semimetals is the existence of Fermi arc surface states at their surface, which cannot be realized in pure two-dimensional systems in the absence of many-body interactions. Due to the gapless bulk of the semimetal, it is, however, challenging to observe clear signatures from the Fermi arc surface states. Here, we propose to detect such novel surface states via perfect negative refraction that occurs between two adjacent open surfaces with properly orientated Fermi arcs. Specifically, this phenomenon visibly manifests in nonlocal transport measurement, where the negative refraction generates a return peak in the realspace conductance. This provides a unique signature of the Fermi arc surface states. We discuss the appearance of this peak in both inversion- and time-reversal-symmetric Weyl semimetals, where the latter exhibits conductance oscillations due to multiple negative refraction scattering events.
引用
收藏
页数:9
相关论文
共 53 条
[1]   Sound of Fermi arcs: a linearly dispersing gapless surface plasmon mode in undoped Weyl semimetals [J].
Adinehvand, F. ;
Faraei, Z. ;
Farajollahpour, T. ;
Jafari, S. A. .
PHYSICAL REVIEW B, 2019, 100 (19)
[2]   Weyl and Dirac semimetals in three-dimensional solids [J].
Armitage, N. P. ;
Mele, E. J. ;
Vishwanath, Ashvin .
REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
[3]  
Balents L., 2011, Physics, V4, P36
[4]   Colloquium: Andreev reflection and Klein tunneling in graphene [J].
Beenakker, C. W. J. .
REVIEWS OF MODERN PHYSICS, 2008, 80 (04) :1337-1354
[5]   Discovery of a new type of topological Weyl fermion semimetal state in MoxW1 - xTe2 [J].
Belopolski, Ilya ;
Sanchez, Daniel S. ;
Ishida, Yukiaki ;
Pan, Xingchen ;
Yu, Peng ;
Xu, Su-Yang ;
Chang, Guoqing ;
Chang, Tay-Rong ;
Zheng, Hao ;
Alidoust, Nasser ;
Bian, Guang ;
Neupane, Madhab ;
Huang, Shin-Ming ;
Lee, Chi-Cheng ;
Song, You ;
Bu, Haijun ;
Wang, Guanghou ;
Li, Shisheng ;
Eda, Goki ;
Jeng, Horng-Tay ;
Kondo, Takeshi ;
Lin, Hsin ;
Liu, Zheng ;
Song, Fengqi ;
Shin, Shik ;
Hasan, M. Zahid .
NATURE COMMUNICATIONS, 2016, 7
[6]   Chirality blockade of Andreev reflection in a magnetic Weyl semimetal [J].
Bovenzi, N. ;
Breitkreiz, M. ;
Baireuther, P. ;
O'Brien, T. E. ;
Tworzydlo, J. ;
Adagideli, I. ;
Beenakker, C. W. J. .
PHYSICAL REVIEW B, 2017, 96 (03)
[7]   Topological nodal semimetals [J].
Burkov, A. A. ;
Hook, M. D. ;
Balents, Leon .
PHYSICAL REVIEW B, 2011, 84 (23)
[8]   Weyl Semimetal in a Topological Insulator Multilayer [J].
Burkov, A. A. ;
Balents, Leon .
PHYSICAL REVIEW LETTERS, 2011, 107 (12)
[9]   The focusing of electron flow and a Veselago lens in graphene p-n junctions [J].
Cheianov, Vadim V. ;
Fal'ko, Vladimir ;
Altshuler, B. L. .
SCIENCE, 2007, 315 (5816) :1252-1255
[10]   Field-effect transistor based on surface negative refraction in Weyl nanowire [J].
Chen, Guangze ;
Chen, Wei ;
Zilberberg, Oded .
APL MATERIALS, 2020, 8 (01)