Classification of Emotion Primitives from EEG Signals Using Visual and Audio Stimuli

被引:0
作者
Dasdemir, Yasar [1 ]
Yildirim, Serdar [2 ]
Yildirim, Esen [2 ]
机构
[1] Mustafa Kemal Univ, Enformat, Antakya, Turkey
[2] Mustafa Kemal Univ, Bilgisayar Muhendisligi, Antakya, Turkey
来源
2015 23RD SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU) | 2015年
关键词
EEG; Arousal; Valence; Emotion Primitive Classification;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Emotion recognition from EEG signals has an important role in designing Brain-Computer Interface. This paper compares effects of audio and visual stimuli, used for collecting emotional EEG signals, on emotion classification performance. For this purpose EEG data from 25 subjects are collected and binary classification (low/high) for valence and activation emotion dimensions are performed. Wavelet transform is used for feature extraction and 3 classifiers are used for classification. True positive rates of 71.7% and 78.5% are obtained using audio and video stimuli for valence dimension 71% and 82% are obtained using audio and video stimuli for arousal dimension, respectively.
引用
收藏
页码:2250 / 2253
页数:4
相关论文
共 50 条
[31]   Extracting the Features of Emotion from EEG Signals and Classify Using Affective Computing [J].
Chinmayi, R. ;
Nair, G. Jayachandran ;
Soundarya, Mantha ;
Poojitha, D. Sai ;
Venugopal, Gayathri ;
Vijayan, Jishnu .
2017 2ND IEEE INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, SIGNAL PROCESSING AND NETWORKING (WISPNET), 2017, :2032-2036
[32]   A Lightweight Deep Learning Model for EEG Classification Across Visual Stimuli [J].
Liu, Yi ;
Goh, Steven ;
Low, Tobias ;
Quince, Zach ;
Teragawa, Shoryu .
PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, :2900-2905
[33]   Emotion Analysis for Personality Inference from EEG Signals [J].
Zhao, Guozhen ;
Ge, Yan ;
Shen, Biying ;
Wei, Xingjie ;
Wang, Hao .
IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2018, 9 (03) :362-371
[34]   SparseDGCNN: Recognizing Emotion From Multichannel EEG Signals [J].
Zhang, Guanhua ;
Yu, Minjing ;
Liu, Yong-Jin ;
Zhao, Guozhen ;
Zhang, Dan ;
Zheng, Wenming .
IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (01) :537-548
[35]   Machine-Learning-Based Emotion Recognition System Using EEG Signals [J].
Alhalaseh, Rania ;
Alasasfeh, Suzan .
COMPUTERS, 2020, 9 (04) :1-15
[36]   Classification of EEG Signals Using Vector Quantization [J].
Berek, Petr ;
Prilepok, Michal ;
Platos, Jan ;
Snasel, Vaclav .
ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2014, PT II, 2014, 8468 :107-118
[37]   The application of EEG signals induced by visual stimuli to human-computer interaction [J].
Kim, KH ;
Kim, HK ;
Choi, JS .
8TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL VII, PROCEEDINGS: APPLICATIONS OF INFORMATICS AND CYBERNETICS IN SCIENCE AND ENGINEERING, 2004, :168-171
[38]   Toward Emotion Aware Computing: An Integrated Approach Using Multichannel Neurophysiological Recordings and Affective Visual Stimuli [J].
Frantzidis, Christos A. ;
Bratsas, Charalampos ;
Papadelis, Christos L. ;
Konstantinidis, Evdokimos ;
Pappas, Costas ;
Bamidis, Panagiotis D. .
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2010, 14 (03) :589-597
[39]   Analysis of EEG response for audio-visual stimuli in frontal electrodes at theta frequency band using the topological features [J].
Kumar H. ;
Puthankattil S.D. ;
Swaminathan R. .
Biomedical Sciences Instrumentation, 2021, 57 (02) :333-339
[40]   Adaptive neuro-fuzzy based hybrid classification model for emotion recognition from EEG signals [J].
F. Kebire Bardak ;
M. Nuri Seyman ;
Feyzullah Temurtaş .
Neural Computing and Applications, 2024, 36 :9189-9202