Existence and multiplicity of normalized solutions for a class of fractional Choquard equations

被引:21
|
作者
Li, Gongbao [1 ,2 ]
Luo, Xiao [1 ,2 ]
机构
[1] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Peoples R China
[2] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
fractional Choquard; normalized solution; limiting behavior; constrained minimization; SCHRODINGER-EQUATIONS; PRESCRIBED NORM; GROUND-STATES; UNIQUENESS;
D O I
10.1007/s11425-017-9287-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence and multiplicity of solutions with a prescribed L-2-norm for a class of nonlinear fractional Choquard equations in Double-struck capital R-N: (-Delta)su-lambda u=(kappa a*|u|p-2u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${( - \Delta )<<^>>s}u - \lambda u = ({\kappa _a}*|u{|<<^>>{p - {2_u}}})$$\end{document} where N > 3, s is an element of (0, 1), alpha is an element of (0, N), p is an element of(max{1+a+2sN,2}N+aN-2s)and kappa a(x)=|x|a-N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \in (max\{ 1 + \frac{{a + 2s}}{N},2\} \frac{{N + a}}{{N - 2s}})and{\kappa _a}(x) = |x{|<<^>>{a - N}}$$\end{document} considered, the functional I is unbounded from below on S(c). By using the constrained minimization method on a suitable submanifold of S(c), we prove that for any c > 0, I has a critical point on S(c) with the least energy among all critical points of I restricted on S(c). After that, we describe a limiting behavior of the constrained critical point as c vanishes and tends to infinity. Moreover, by using a minimax procedure, we prove that for any c > 0, there are infinitely many radial critical points of I restricted on S(c).
引用
收藏
页码:539 / 558
页数:20
相关论文
共 50 条
  • [1] Existence and multiplicity of normalized solutions for a class of fractional Choquard equations
    Gongbao Li
    Xiao Luo
    ScienceChina(Mathematics), 2020, 63 (03) : 539 - 558
  • [2] Existence and multiplicity of normalized solutions for a class of fractional Choquard equations
    Gongbao Li
    Xiao Luo
    Science China Mathematics, 2020, 63 : 539 - 558
  • [3] Existence and multiplicity of solutions for fractional Choquard equations
    Ma, Pei
    Zhang, Jihui
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 164 : 100 - 117
  • [4] Existence and multiplicity of normalized solutions for a class of fractional Schrodinger-Poisson equations
    Yang, Zhipeng
    Zhao, Fukun
    Zhao, Shunneng
    ANNALES FENNICI MATHEMATICI, 2022, 47 (02): : 777 - 790
  • [5] Multiplicity of Normalized Solutions to a Class of Non-autonomous Choquard Equations
    Meng, Yuxi
    Wang, Bo
    JOURNAL OF GEOMETRIC ANALYSIS, 2025, 35 (01)
  • [6] Multiplicity of normalized solutions for nonlinear Choquard equations
    Long, Chun-Fei
    Deng, Chonghao
    Li, Gui-Dong
    Tang, Chun-Lei
    ADVANCED NONLINEAR STUDIES, 2025,
  • [7] Normalized solutions for a class of nonlinear Choquard equations
    Bartsch, Thomas
    Liu, Yanyan
    Liu, Zhaoli
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2020, 1 (05):
  • [8] Multiplicity of solutions for a class of fractional Choquard–Kirchhoff equations involving critical nonlinearity
    Fuliang Wang
    Mingqi Xiang
    Analysis and Mathematical Physics, 2019, 9 : 1 - 16
  • [9] Multiplicity of solutions for a class of fractional Choquard-Kirchhoff equations involving critical nonlinearity
    Wang, Fuliang
    Xiang, Mingqi
    ANALYSIS AND MATHEMATICAL PHYSICS, 2019, 9 (01) : 1 - 16
  • [10] Asymptotic behaviors of normalized solutions for a class of Choquard equations
    Wang, Yachen
    Ma, Shiwang
    Liu, Xiaonan
    APPLIED MATHEMATICS LETTERS, 2023, 142