Malware, i.e., malicious software, represents one of the main cyber security threats today. Over the last decade malware has been evolving in terms of the complexity of malicious software and the diversity of attack vectors. As a result modern malware is characterized by sophisticated obfuscation techniques, which hinder the classical static analysis approach. Furthermore, the increased amount of malware that emerges every day, renders a manual approach inefficient. This study tackles the problem of analyzing, detecting and classifying the vast amount of malware in a scalable, efficient and accurate manner. We propose a novel approach for detecting malware and classifying it to either known or novel, i.e., previously unseen malware family. The approach relies on Random Forests classifier for performing both malware detection and family classification. Furthermore, the proposed approach employs novel feature representations for malware classification, that significantly reduces the feature space, while achieving encouraging predictive performance. The approach was evaluated using behavioral traces of over 270,000 malware samples and 837 samples of benign software. The behavioral traces were obtained using a modified version of Cuckoo sandbox, that was able to harvest behavioral traces of the analyzed samples in a time-efficient manner. The proposed system achieves high malware detection rate and promising predictive performance in the family classification, opening the possibility of coping with the use of obfuscation and the growing number of malware.