Umbral orthogonal polynomials

被引:0
作者
Lopez-Sendino, J. E. [1 ]
del Olmo, M. A. [1 ]
机构
[1] Univ Valladolid, Dept Fis Teor, E-47005 Valladolid, Spain
来源
SYMMETRIES IN NATURE | 2010年 / 1323卷
关键词
discrete calculus; orthogonal polynomials; umbral calculus; DIFFERENCE-EQUATIONS; QUANTUM-GRAVITY; CALCULUS;
D O I
暂无
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present an umbral operator version of the classical orthogonal polynomials. We obtain three families which are the umbral counterpart of the Jacobi, Laguerre and Hermite polynomials in the classical case.
引用
收藏
页码:52 / 61
页数:10
相关论文
共 14 条
[1]  
AMELINOCAMELIA G, 2002, FATE LORENTZ SYMMETR
[2]   Umbral calculus, discretization, and quantum mechanics on a lattice [J].
Dimakis, A ;
MullerHoissen, F ;
Striker, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (21) :6861-6876
[3]  
GIBBS P, 1995, SMALL SCALE STRUCTUR
[4]  
Kauffman S, 2000, LECT NOTES PHYS, V541, P101
[5]   Umbral calculus, difference equations and the discrete Schrodinger equation [J].
Levi, D ;
Tempesta, P ;
Winternitz, P .
JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (11) :4077-4105
[6]   Discrete derivatives and symmetries of difference equations [J].
Levi, D ;
Negro, J ;
del Olmo, MA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (10) :2023-2030
[7]   Quantum mechanics and umbral calculus [J].
Lopez-Sendino, J. E. ;
Negro, J. ;
del Olmo, M. A. ;
Salgado, E. .
5TH INTERNATIONAL SYMPOSIUM ON QUANTUM THEORY AND SYMMETRIES QTS5, 2008, 128
[8]   Discrete Coulomb Potential [J].
Lopez-Sendino, J. E. ;
Negro, J. ;
del Olmo, M. A. .
PHYSICS OF ATOMIC NUCLEI, 2010, 73 (02) :384-390
[9]   A new model for the structure of spacetime: physical applications [J].
Lorente, Miguel .
SYMMETRIES IN SCIENCE XIV, 2010, 237
[10]  
Nikiforov AF, 1991, CLASSICAL ORTHOGONAL