Prediction of calcium concentration in human blood serum using an artificial neural network

被引:11
作者
Neelamegam, P. [1 ]
Jamaludeen, A. [2 ]
Rajendran, A. [3 ]
机构
[1] SASTRA Univ, Dept Elect & Instrumentat Engn, Thanjavur 613402, Tamil Nadu, India
[2] St Josephs Coll Autonomous, PG Dept Elect, Tiruchirappalli 620002, Tamil Nadu, India
[3] Nehru Mem Coll Autonomous, PG & Res Dept Phys, Tiruchirappalli 621007, Tamil Nadu, India
关键词
Artificial neural network; Back propagation algorithm; Blood serum; Calcium; Microcontroller; LED; Photo diode;
D O I
10.1016/j.measurement.2010.09.035
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A predictive method, based on artificial neural network (ANN) has been developed to study absorbance and pH effects on the equilibrium of blood serum. This strategy has been used to analyze serum samples and to predict the calcium concentration in blood serum. A dedicated data acquisition system is designed and fabricated using a LPC2106 microcontroller with light emitting diode (LED) as source and photodiode as sensor to measure absorbance and to calculate the calcium concentration. A multilayer neural network with back propagation (BP) training algorithm is used to simulate different concentration of calcium (Ca2+) as a function of absorbance and pH, to correlate and predict calcium concentration. The computed calcium concentration by neural network is quite satisfactory with correlations R-2 = 0.998 and 0.995, standard errors of 0.0127 and 0.0122 in validation and testing stages respectively. Statistical analysis are carried out to check the accuracy and precision of the proposed ANN model and validation of results produce a relative error of about 3%. These results suggest that ANN can be efficiently applied and is in good agreement with values obtained with the current clinical spectrophotometric methods. Hence, ANN can be used as a complementary tool for studying metal ion complexion, with special attention to the blood serum analysis. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:312 / 319
页数:8
相关论文
共 50 条
  • [11] Prediction of disturbances in the ionosphere by using the artificial neural network
    Liu, W
    Jiao, PN
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2001, 44 (01): : 24 - 30
  • [12] Prediction of Egg Production Using Artificial Neural Network
    Ghazanfari, S.
    Nobari, K.
    Tahmoorespur, M.
    IRANIAN JOURNAL OF APPLIED ANIMAL SCIENCE, 2011, 1 (01): : 11 - 16
  • [13] Using artificial neural network for reservoir eutrophication prediction
    Kuo, Jan-Tai
    Hsieh, Ming-Han
    Lung, Wu-Seng
    She, Nian
    ECOLOGICAL MODELLING, 2007, 200 (1-2) : 171 - 177
  • [14] Prediction of extrusion pressure using an artificial neural network
    Li, YY
    Bridgwater, J
    POWDER TECHNOLOGY, 2000, 108 (01) : 65 - 73
  • [15] Prediction of the plasma distribution using an artificial neural network
    Li Wei
    Chen Jun-Fang
    Wang Teng
    CHINESE PHYSICS B, 2009, 18 (06) : 2441 - 2444
  • [16] Prediction of air pollutants by using an artificial neural network
    Sang Hyun Sohn
    Sea Cheon Oh
    Yeong-Koo Yeo
    Korean Journal of Chemical Engineering, 1999, 16 : 382 - 387
  • [17] Prediction of semen quality using artificial neural network
    Badura, Anna
    Marzec-Wroblewska, Urszula
    Kaminski, Piotr
    Lakota, Pawel
    Ludwikowski, Grzegorz
    Szymanski, Marek
    Wasilow, Karolina
    Lorenc, Andzelika
    Bucinski, Adam
    JOURNAL OF APPLIED BIOMEDICINE, 2019, 17 (03) : 167 - 174
  • [18] PVT Properties Prediction Using Artificial Neural Network
    Rashidi, F.
    Rasouli, I.
    Khamehchi, E.
    PROCEEDINGS OF THE NINTH ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON COMBUSTION AND ENERGY UTILIZATION, 2008, : 78 - 81
  • [19] The Prediction of Permeability Using an Artificial Neural Network System
    Pazuki, G. R.
    Nikookar, M.
    Dehnavi, M.
    Al-Anazi, B.
    PETROLEUM SCIENCE AND TECHNOLOGY, 2012, 30 (20) : 2108 - 2113
  • [20] Prediction of Dissolved Oxygen Using Artificial Neural Network
    Areerachakul, Sirilak
    Junsawang, Prem
    Pomsathit, Auttapon
    COMPUTER COMMUNICATION AND MANAGEMENT, 2011, 5 : 524 - 528