Therapeutic Approaches for Patients with Cystic Fibrosis Not Eligible for Current CFTR Modulators

被引:27
作者
Fajac, Isabelle [1 ,2 ]
Sermet, Isabelle [2 ,3 ,4 ]
机构
[1] Ctr Univ Paris, Hop Cochin, AP HP, Ctr Reference Malad Rare Mucoviscidose, F-75014 Paris, France
[2] Univ Paris, Fac Med, F-75006 Paris, France
[3] INSERM, U 1151, Inst Necker Enfants Malad, F-75015 Paris, France
[4] Ctr Univ Paris, Hop Necker Enfants Malades, AP HP, Ctr Reference Malad Rare Mucoviscidose, F-75015 Paris, France
关键词
cystic fibrosis; CFTR modulators; readthrough agents; RNA therapy; gene therapy; gene editing; cell-based therapy; MESSENGER-RNA; GENE; MUTATIONS; ORGANOIDS; IVACAFTOR; DISEASE; REPAIR;
D O I
10.3390/cells10102793
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Cystic fibrosis is a severe autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene encoding the CFTR protein, a chloride channel expressed in many epithelial cells. New drugs called CFTR modulators aim at restoring the CFTR protein function, and they will benefit many patients with cystic fibrosis in the near future. However, some patients bear rare mutations that are not yet eligible for CFTR modulators, although they might be amenable to these new disease-modifying drugs. Moreover, more than 10% of CFTR mutations do not produce any CFTR protein for CFTR modulators to act upon. The purpose of this review is to provide an overview of different approaches pursued to treat patients bearing mutations ineligible for CFTR modulators. One approach is to broaden the numbers of mutations eligible for CFTR modulators. This requires developing strategies to evaluate drugs in populations bearing very rare genotypes. Other approaches aiming at correcting the CFTR defect develop new mutation-specific or mutation-agnostic therapies for mutations that do not produce a CFTR protein: readthrough agents for nonsense mutations, nucleic acid-based therapies, RNA- or DNA-based, and cell-based therapies. Most of these approaches are in pre-clinical development or, for some of them, early clinical phases. Many hurdles and challenges will have to be solved before they can be safely translated to patients.</p>
引用
收藏
页数:11
相关论文
共 59 条
  • [21] Tools for translation: non-viral materials for therapeutic mRNA delivery
    Hajj, Khalid A.
    Whitehead, Kathryn A.
    [J]. NATURE REVIEWS MATERIALS, 2017, 2 (10):
  • [22] Derivation of Airway Basal Stem Cells from Human Pluripotent Stem Cells
    Hawkins, Finn J.
    Suzuki, Shingo
    Beermann, Mary Lou
    Barilla, Cristina
    Wang, Ruobing
    Villacorta-Martin, Carlos
    Berical, Andrew
    Jean, J. C.
    Le Suer, Jake
    Matte, Taylor
    Simone-Roach, Chantelle
    Tang, Yang
    Schlaeger, Thorsten M.
    Crane, Ana M.
    Matthias, Nadine
    Huang, Sarah X. L.
    Randell, Scott H.
    Wu, Joshua
    Spence, Jason R.
    Carraro, Gianni
    Stripp, Barry R.
    Rab, Andras
    Sorsher, Eric J.
    Horani, Amjad
    Brody, Steven L.
    Davis, Brian R.
    Kotton, Darrell N.
    [J]. CELL STEM CELL, 2021, 28 (01) : 79 - +
  • [23] Cell Therapy for Cystic Fibrosis Lung Disease: Regenerative Basal Cell Amplification
    Hayes, Don, Jr.
    Kopp, Benjamin T.
    Hill, Cynthia L.
    Lallier, Scott W.
    Schwartz, Cynthia M.
    Tadesse, Mahelet
    Alsudayri, Alfahdah
    Reynolds, Susan D.
    [J]. STEM CELLS TRANSLATIONAL MEDICINE, 2019, 8 (03) : 225 - 235
  • [24] Delivering on the promise of gene editing for cystic fibrosis
    Hodges, Craig A.
    Conlon, Ronald A.
    [J]. GENES & DISEASES, 2019, 6 (02) : 97 - 108
  • [25] Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations
    Howard, M
    Frizzell, DM
    Bedwell, DM
    [J]. NATURE MEDICINE, 1996, 2 (04) : 467 - 469
  • [26] The in vitro generation of lung and airway progenitor cells from human pluripotent stem cells
    Huang, Sarah X. L.
    Green, Michael D.
    de Carvalho, Ana Toste
    Mumau, Melanie
    Chen, Ya-Wen
    D'Souza, Sunita L.
    Snoeck, Hans-Willem
    [J]. NATURE PROTOCOLS, 2015, 10 (03) : 413 - 425
  • [27] Correction of a Cystic Fibrosis Splicing Mutation by Antisense Oligonucleotides
    Igreja, Susana
    Clarke, Luka A.
    Botelho, Hugo M.
    Marques, Luis
    Amaral, Margarida D.
    [J]. HUMAN MUTATION, 2016, 37 (02) : 209 - 215
  • [28] Nonsense-mediated RNA Decay Pathway Inhibition Restores Expression and Function of W1282X CFTR
    Keenan, Melissa M.
    Huang, Lulu
    Jordan, Nikole J.
    Wong, Eric
    Cheng, Yi
    Valley, Hillary C.
    Mahiou, Jerome
    Liang, Feng
    Bihler, Hermann
    Mense, Martin
    Guo, Shuling
    Monia, Brett P.
    [J]. AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 2019, 61 (03) : 290 - 300
  • [29] ELX-02: an investigational read-through agent for the treatment of nonsense mutation-related genetic disease
    Kerem, Eitan
    [J]. EXPERT OPINION ON INVESTIGATIONAL DRUGS, 2020, 29 (12) : 1347 - 1353
  • [30] Ataluren for the treatment of nonsense-mutation cystic fibrosis: a randomised, double-blind, placebo-controlled phase 3 trial
    Kerem, Elton
    Konstan, Michael W.
    De Boeck, Kris
    Accurso, Frank J.
    Sermet-Gaudelus, Isabelle
    Wilschanski, Michael
    Elborn, J. Stuart
    Melotti, Paola
    Bronsveld, Inez
    Fajac, Isabelle
    Malfroot, Anne
    Rosenbluth, Daniel B.
    Walker, Patricia A.
    McColley, Susanna A.
    Knoop, Christiane
    Quattrucci, Serena
    Rietschel, Ernst
    Zeitlin, Pamela L.
    Barth, Jay
    Elfring, Guy L.
    Welch, Ellen M.
    Branstrom, Arthur
    Spiegel, Robert J.
    Peltz, Stuart W.
    Ajayi, Temitayo
    Rowe, Steven M.
    [J]. LANCET RESPIRATORY MEDICINE, 2014, 2 (07) : 539 - 547