Particle filter for tracking linear Gaussian target with nonlinear observations

被引:0
作者
Ooi, A [1 ]
Doucet, A [1 ]
Vo, BN [1 ]
Ristic, B [1 ]
机构
[1] Univ Melbourne, Dept Elect & Elect Engn, Melbourne, Vic 3010, Australia
来源
SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION XII | 2003年 / 5096卷
关键词
target tracking; particle filter; linear Gaussian target; nonlinear observations;
D O I
10.1117/12.487496
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a solution to the TENET nonlinear filtering challenge is presented.* The proposed approach is based on particle filtering techniques. Particle methods have already been used in this context but our method improves over previous work in several ways: better importance sampling distribution, variance reduction through Rao-Blackwellisation etc. We demonstrate the efficiency of our algorithm through simulation.
引用
收藏
页码:59 / 70
页数:12
相关论文
共 9 条
  • [1] Particle filtering for partially observed Gaussian state space models
    Andrieu, C
    Doucet, A
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2002, 64 : 827 - 836
  • [2] [Anonymous], 1970, MATH SCI ENG
  • [3] Arulampalam M. S., 2002, IEEE T SIGNAL PROCES, V50
  • [4] Bar-Shalom Yaakov., 1993, ESTIMATION TRACKING
  • [5] Doucet A., SEQUENTIAL MONTE CAR
  • [6] Doucet A., 1998, CUEDFINFENGTR310
  • [7] NOVEL-APPROACH TO NONLINEAR NON-GAUSSIAN BAYESIAN STATE ESTIMATION
    GORDON, NJ
    SALMOND, DJ
    SMITH, AFM
    [J]. IEE PROCEEDINGS-F RADAR AND SIGNAL PROCESSING, 1993, 140 (02) : 107 - 113
  • [8] KITAGAWA G, J COMPUT GRAPH STATE, V5, P1
  • [9] MUSICK S, 2001, C P FUS 2001 AUG 6 1