Patch repair of deep wounds by mobilized fascia

被引:152
作者
Correa-Gallegos, Donovan [1 ]
Jiang, Dongsheng [1 ]
Christ, Simon [1 ]
Ramesh, Pushkar [1 ]
Ye, Haifeng [1 ]
Wannemacher, Juliane [1 ]
Gopal, Shruthi Kalgudde [1 ]
Yu, Qing [1 ]
Aichler, Michaela [2 ]
Walch, Axel [2 ]
Mirastschijski, Ursula [3 ,4 ]
Volz, Thomas [5 ]
Rinkevich, Yuval [1 ,6 ]
机构
[1] Helmholtz Zentrum Munchen, Inst Lung Biol & Dis, Grp Regenerat Biol & Med, Munich, Germany
[2] Helmholtz Zentrum Munchen, Res Unit Analyt Pathol, Munich, Germany
[3] Mira Beau Gender Esthet, Berlin, Germany
[4] Univ Bremen, Dept Biol & Biochem, Wound Repair Unit, CBIB, Bremen, Germany
[5] Tech Univ Munich, Klinikum Rechts Isar, Sch Med, Dept Dermatol & Allergol, Munich, Germany
[6] German Ctr Lung Res DZL, Munich, Germany
基金
欧洲研究理事会;
关键词
SKIN; TISSUE; REGENERATION;
D O I
10.1038/s41586-019-1794-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mammals form scars to quickly seal wounds and ensure survival by an incompletely understood mechanism(1-5). Here we show that skin scars originate from prefabricated matrix in the subcutaneous fascia. Fate mapping and live imaging revealed that fascia fibroblasts rise to the skin surface after wounding, dragging their surrounding extracellular jelly-like matrix, including embedded blood vessels, macrophages and peripheral nerves, to form the provisional matrix. Genetic ablation of fascia fibroblasts prevented matrix from homing into wounds and resulted in defective scars, whereas placing an impermeable film beneath the skin-preventing fascia fibroblasts from migrating upwards-led to chronic open wounds. Thus, fascia contains a specialized prefabricated kit of sentry fibroblasts, embedded within a movable sealant, that preassemble together diverse cell types and matrix components needed to heal wounds. Our findings suggest that chronic and excessive skin wounds may be attributed to the mobility of the fascia matrix.
引用
收藏
页码:287 / +
页数:19
相关论文
共 27 条
  • [1] The membranous layer of superficial fascia: evidence for its widespread distribution in the body
    Abu-Hijleh, M. F.
    Roshier, A. L.
    Al-Shboul, Q.
    Dharap, A. S.
    Harris, P. F.
    [J]. SURGICAL AND RADIOLOGIC ANATOMY, 2006, 28 (06) : 606 - 619
  • [2] Adstrum S, 2017, J BODYW MOV THER, V21, P173, DOI 10.1016/j.jbmt.2016.11.003
  • [3] Convective tissue movements play a major role in avian endocardial morphogenesis
    Aleksandrova, Anastasiia
    Czirok, Andras
    Szabo, Andras
    Filla, Michael B.
    Hossain, M. Julius
    Whelan, Paul F.
    Lansford, Rusty
    Rongish, Brenda J.
    [J]. DEVELOPMENTAL BIOLOGY, 2012, 363 (02) : 348 - 361
  • [5] Skin fibrosis: Models and mechanisms
    Do, N. N.
    Eming, S. A.
    [J]. CURRENT RESEARCH IN TRANSLATIONAL MEDICINE, 2016, 64 (04) : 185 - 193
  • [6] Distinct fibroblast lineages determine dermal architecture in skin development and repair
    Driskell, Ryan R.
    Lichtenberger, Beate M.
    Hoste, Esther
    Kretzschmar, Kai
    Simons, Ben D.
    Charalambous, Marika
    Ferron, Sacri R.
    Herault, Yann
    Pavlovic, Guillaume
    Ferguson-Smith, Anne C.
    Watt, Fiona M.
    [J]. NATURE, 2013, 504 (7479) : 277 - +
  • [7] Dunkin CSJ, 2007, PLAST RECONSTR SURG, V119, P1722, DOI 10.1097/01.prs.0000258829.07399.f0
  • [8] Hypertrophic scarring: the greatest unmet challenge after burn injury
    Finnerty, Celeste C.
    Jeschke, Marc G.
    Branski, Ludwik K.
    Barret, Juan P.
    Dziewulski, Peter
    Herndon, David N.
    [J]. LANCET, 2016, 388 (10052) : 1427 - 1436
  • [9] Healing scars: targeting pericytes to treat fibrosis
    Greenhalgh, S. N.
    Conroy, K. P.
    Henderson, N. C.
    [J]. QJM-AN INTERNATIONAL JOURNAL OF MEDICINE, 2015, 108 (01) : 3 - 7
  • [10] Myofibroblasts
    Hinz, Boris
    [J]. EXPERIMENTAL EYE RESEARCH, 2016, 142 : 56 - 70