Wet-chemical nitrogen-doping of graphene nanoplatelets as electrocatalysts for the oxygen reduction reaction

被引:44
作者
Chang, Dong Wook [1 ]
Choi, Hyun-Jung [2 ]
Baek, Jong-Beom [2 ]
机构
[1] Pukyong Natl Univ, Dept Ind Chem, Pusan 608739, South Korea
[2] Ulsan Natl Univ Sci & Technol UNIST, Sch Energy & Chem Engn, Low Dimens Carbon Mat Ctr, Ulsan 689798, South Korea
基金
新加坡国家研究基金会;
关键词
DOPED GRAPHENE; ENERGY-CONVERSION; CELLS;
D O I
10.1039/c4ta07035f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report a facile wet-chemical approach for the preparation of high-quality pyridinic N-rich nitrogen-doped graphene nanoplatelets (PN-GNs). Efficient doping of nitrogen atoms into two-dimensional graphene networks can be achieved via an acid-catalyzed dehydration reaction between GO and primary amine-containing small molecules. The nitrogen content in PN-GNs can easily be controlled over a wide range (3.27-15.28 wt%) by simple variation of the molar feed ratio of reactants. Furthermore, specific pyridinic nitrogen configurations, considered beneficial for the ORR process, can be incorporated into the PN-GNs. This results in the efficient structural restoration of graphene structures during the reaction. Therefore, these unique features of PN-GNs allow them to show superior electrocatalytic activities (high selectivity, excellent long-term stability and good tolerance to methanol crossover) toward the ORR in an alkaline electrolyte.
引用
收藏
页码:7659 / 7665
页数:7
相关论文
共 35 条
[1]   Influence of Stacking Morphology and Edge Nitrogen Doping on the Dielectric Performance of Graphene-Polymer Nanocomposites [J].
Almadhoun, Mahmoud N. ;
Hedhili, M. N. ;
Odeh, Ihab N. ;
Xavier, Prince ;
Bhansali, Unnat S. ;
Alshareef, H. N. .
CHEMISTRY OF MATERIALS, 2014, 26 (09) :2856-2861
[2]   Nitrogen-Doped Graphene Nanoplatelets from Simple Solution Edge-Functionalization for n-Type Field-Effect Transistors [J].
Chang, Dong Wook ;
Lee, Eun Kwang ;
Park, Eun Yeob ;
Yu, Hojeong ;
Choi, Hyun-Jung ;
Jeon, In-Yup ;
Sohn, Gyung-Joo ;
Shin, Dongbin ;
Park, Noejung ;
Oh, Joon Hak ;
Dai, Liming ;
Baek, Jong-Beom .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (24) :8981-8988
[3]   Graphene for energy conversion and storage in fuel cells and supercapacitors [J].
Choi, Hyun-Jung ;
Jung, Sun-Min ;
Seo, Jeong-Min ;
Chang, Dong Wook ;
Dai, Liming ;
Baek, Jong-Beom .
NANO ENERGY, 2012, 1 (04) :534-551
[4]   Functionalization of Graphene for Efficient Energy Conversion and Storage [J].
Dai, Liming .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (01) :31-42
[5]   Carbon Nanomaterials for Advanced Energy Conversion and Storage [J].
Dai, Liming ;
Chang, Dong Wook ;
Baek, Jong-Beom ;
Lu, Wen .
SMALL, 2012, 8 (08) :1130-1166
[6]   Interpretation of Raman spectra of disordered and amorphous carbon [J].
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2000, 61 (20) :14095-14107
[7]  
Gao W, 2009, NAT CHEM, V1, P403, DOI [10.1038/NCHEM.281, 10.1038/nchem.281]
[8]   High oxygen-reduction activity and durability of nitrogen-doped graphene [J].
Geng, Dongsheng ;
Chen, Ying ;
Chen, Yougui ;
Li, Yongliang ;
Li, Ruying ;
Sun, Xueliang ;
Ye, Siyu ;
Knights, Shanna .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (03) :760-764
[9]   PREPARATION OF GRAPHITIC OXIDE [J].
HUMMERS, WS ;
OFFEMAN, RE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1958, 80 (06) :1339-1339
[10]   Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction [J].
Jeon, In-Yup ;
Choi, Hyun-Jung ;
Choi, Min ;
Seo, Jeong-Min ;
Jung, Sun-Min ;
Kim, Min-Jung ;
Zhang, Sheng ;
Zhang, Lipeng ;
Xia, Zhenhai ;
Dai, Liming ;
Park, Noejung ;
Baek, Jong-Beom .
SCIENTIFIC REPORTS, 2013, 3