Dynamic temperature gradient and unfalsified control approach for machine tool thermal error compensation

被引:12
作者
Yao, Xiao-dong [1 ]
Du, Zheng-chun [1 ]
Ge, Guang-yan [1 ]
Yang, Jian-guo [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
CNC machine; Spindle thermal error; Thermal error compensation; Dynamic gradient; Unfalsified control; PREDICTION; SPINDLES;
D O I
10.1007/s12206-019-1232-y
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this work, a novel machine tool thermal error modeling method based on dynamic temperature gradient is proposed, and a thermal error compensation method based on unfalsified control is developed. The dynamic temperature gradient is used to optimize the locations of temperature measuring points on the machine tool. Real-time compensation for the thermal error can be achieved using the developed compensation method by establishing the correlations between dynamic temperature gradient and thermal error in the machine tool. Different from traditional model-based methods, the developed compensation approach does not rely on an accurate model of the thermal error but instead uses online input/output data to adaptively select the best controller at any moment, thereby improving thermal error prediction accuracy and robustness. The effectiveness of the developed thermal error compensation method is demonstrated on a turning center, where the spindle thermal error is compensated during the manufacturing of 120 inner bore parts and 120 shaft parts. After compensation using the proposed approach, thermal errors are reduced from 27 omega m to 9 omega m for the inner bore parts and from 31 omega m to 11 omega m for the shaft parts, respectively.
引用
收藏
页码:319 / 331
页数:13
相关论文
共 22 条
[1]   Multi-model unfalsified adaptive switching supervisory control [J].
Baldi, Simone ;
Battistelli, Giorgio ;
Mosca, Edoardo ;
Tesi, Pietro .
AUTOMATICA, 2010, 46 (02) :249-259
[2]   Stability of Unfalsified Adaptive Switching Control in Noisy Environments [J].
Battistelli, Giorgio ;
Mosca, Edoardo ;
Safonov, Michael G. ;
Tesi, Pietro .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (10) :2424-2429
[3]   Combined Explicit Finite and Discrete Element Methods for Rotor Bearing Dynamic Modeling [J].
Brouwer, Matthew D. ;
Sadeghi, Farshid ;
Ashtekar, Ankur ;
Archer, Jamie ;
Lancaster, Craig .
TRIBOLOGY TRANSACTIONS, 2015, 58 (02) :300-315
[4]  
Bryan J., 1990, CIRP ANN-MANUF TECHN, V39, P645
[5]   An inverse method for estimating heat sources in a high speed spindle [J].
Huang, Jin-Huang ;
Van-The Than ;
Thi-Thao Ngo ;
Wang, Chi-Chang .
APPLIED THERMAL ENGINEERING, 2016, 105 :65-76
[6]   A review on spindle thermal error compensation in machine tools [J].
Li, Yang ;
Zhao, Wanhua ;
Lan, Shuhuai ;
Ni, Jun ;
Wu, Wenwu ;
Lu, Bingheng .
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2015, 95 :20-38
[7]   Thermal error robust modeling method for CNC machine tools based on a split unbiased estimation algorithm [J].
Liu, Hui ;
Miao, Enming ;
Zhuang, Xindong ;
Wei, Xinyuan .
PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2018, 51 :169-175
[8]   Modeling and compensation for spindle's radial thermal drift error on a vertical machining center [J].
Liu, Kuo ;
Sun, Mingjia ;
Zhu, Tiejun ;
Wu, Yuliang ;
Liu, Yu .
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2016, 105 :58-67
[9]   Power matching based dissipation strategy onto spindle heat generations [J].
Liu, Teng ;
Gao, Weiguo ;
Tian, Yanling ;
Zhang, Dawei ;
Zhang, Yifan ;
Chang, Wenfen .
APPLIED THERMAL ENGINEERING, 2017, 113 :499-507
[10]   Simulation and experimental study on the thermally induced deformations of high-speed spindle system [J].
Ma, Chi ;
Yang, Jun ;
Zhao, Liang ;
Mei, Xuesong ;
Shi, Hu .
APPLIED THERMAL ENGINEERING, 2015, 86 :251-268