The two-loop hexagon Wilson loop in N=4 Super Yang-Mills

被引:0
作者
Duhr, Claude [1 ]
机构
[1] Univ Durham, Inst Particle Phys Phenomenol, Durham DH1 3LE, England
关键词
TRANSCENDENTAL FUNCTIONS; AMPLITUDES;
D O I
10.1016/j.nuclphysbps.2010.08.043
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We discuss the computation of polygonal Wilson loops in planar N = 4 Super Yang-Mills. The cornerstone of our approach is the Regge-exactness of polygonal Wilson loops, which allows us to reduce the complexity of the computation substantially. We illustrate this technique on the example of the hexagon Wilson loop. This computation allowed us recently to obtain for the first time an analytic remainder function for the six-edged Wilson loop in N = 4 Super Yang-Mills.
引用
收藏
页码:199 / 204
页数:6
相关论文
共 30 条
[1]  
Alday L.F., ARXIV09114708HEPTH
[2]   Gluon scattering amplitudes at strong coupling [J].
Alday, Luis F. ;
Maldacena, Juan .
JOURNAL OF HIGH ENERGY PHYSICS, 2007, (06)
[3]   Two-loop polygon Wilson loops in N=4 SYM [J].
Anastasiou, C. ;
Brandhuber, A. ;
Heslop, P. ;
Khoze, V. V. ;
Spence, B. ;
Travaglini, G. .
JOURNAL OF HIGH ENERGY PHYSICS, 2009, (05)
[4]   Two-loop iteration of five-point N=4 super-Yang-Mills amplitudes [J].
Bern, Z. ;
Czakon, M. ;
Kosower, D. A. ;
Roiban, R. ;
Smirnov, V. A. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[5]   Two-loop six-gluon maximally helicity violating amplitude in maximally supersymmetric Yang-Mills theory [J].
Bern, Z. ;
Dixon, L. J. ;
Kosower, D. A. ;
Roiban, R. ;
Spradlin, M. ;
Vergu, C. ;
Volovich, A. .
PHYSICAL REVIEW D, 2008, 78 (04)
[6]   ONE-LOOP N-POINT GAUGE-THEORY AMPLITUDES, UNITARITY AND COLLINEAR LIMITS [J].
BERN, Z ;
DIXON, L ;
DUNBAR, DC ;
KOSOWER, DA .
NUCLEAR PHYSICS B, 1994, 425 (1-2) :217-260
[7]  
BRANDHUBER A, 2010, JHEP, V1001
[8]   MHV amplitudes in N=4 super-Yang-Mills and Wilson!Loops [J].
Brandhuber, Andreas ;
Heslop, Paul ;
Travaglini, Gabriele .
NUCLEAR PHYSICS B, 2008, 794 (1-2) :231-243
[9]   Automatized analytic continuation of Mellin-Barnes integrals [J].
Czakon, M. .
COMPUTER PHYSICS COMMUNICATIONS, 2006, 175 (08) :559-571
[10]  
CZAKON M, MBASYMPTOTICS, P13010