Non-invasive Oscillometry-Based Estimation of Cardiac Output - Can We Use It in Clinical Practice?

被引:1
作者
Reshetnik, Alexander [1 ]
Gjolli, Jonida
van der Giet, Markus
Compton, Friederike
机构
[1] Free Univ Berlin, Dept Nephrol & Intens Care Med, Berlin, Germany
关键词
non-invasive; cardiac output measurement; thermodilution; oscillometric; pulse wave analysis; ARTERIAL;
D O I
10.3389/fphys.2021.704425
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
While invasive thermodilution techniques remain the reference methods for cardiac output (CO) measurement, there is a currently unmet need for non-invasive techniques to simplify CO determination, reduce complications related to invasive procedures required for indicator dilution CO measurement, and expand the application field toward emergency room, non-intensive care, or outpatient settings. We evaluated the performance of a non-invasive oscillometry-based CO estimation method compared to transpulmonary thermodilution. To assess agreement between the devices, we used Bland-Altman analysis. Four-quadrant plot analysis was used to visualize the ability of Mobil-O-Graph (MG) to track CO changes after a fluid challenge. Trending analysis of CO trajectories was used to compare MG and PiCCO(R) calibrated pulse wave analysis over time (6 h). We included 40 patients from the medical intensive care unit at the Charite - Universitatsmedizin Berlin, Campus Benjamin Franklin between November 2019 and June 2020. The median age was 73 years. Forty percent of the study population was male; 98% was ventilator-dependent and 75% vasopressor-dependent at study entry. The mean of the observed differences for the cardiac output index (COI) was 0.7 l*min(-1*)m(-2) and the lower, and upper 95% limits of agreement (LOA) were -1.9 and 3.3 l*min(-1*)m(-2), respectively. The 95% confidence interval for the LOA was +/- 0.26 l*min(-1*)m(-2), the percentage error 83.6%. We observed concordant changes in CO with MG and PiCCO(R) in 50% of the measurements after a fluid challenge and over the course of 6 h. Cardiac output calculation with a novel oscillometry-based pulse wave analysis method is feasible and replicable in critically ill patients. However, we did not find clinically applicable agreement between MG and thermodilution or calibrated pulse wave analysis, respectively, assessed with established evaluation routine using the Bland-Altman approach and with trending analysis methods. In summary, we do not recommend the use of this method in critically ill patients at this time. As the basic approach is promising and the CO determination with MG very simple to perform, further studies should be undertaken both in hemodynamically stable patients, and in the critical care setting to allow additional adjustments of the underlying algorithm for CO estimation with MG.
引用
收藏
页数:7
相关论文
共 18 条
[1]   Agreement between methods of measurement with multiple observations per individual [J].
Bland, J. Martin ;
Altman, Douglas G. .
JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2007, 17 (04) :571-582
[2]   Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine [J].
Cecconi, Maurizio ;
De Backer, Daniel ;
Antonelli, Massimo ;
Beale, Richard ;
Bakker, Jan ;
Hofer, Christoph ;
Jaeschke, Roman ;
Mebazaa, Alexandre ;
Pinsky, Michael R. ;
Teboul, Jean Louis ;
Vincent, Jean Louis ;
Rhodes, Andrew .
INTENSIVE CARE MEDICINE, 2014, 40 (12) :1795-1815
[3]   Performance of a minimally invasive uncalibrated cardiac output monitoring system (Flotrac™/Vigileo™) in haemodynamically unstable patients [J].
Compton, F. D. ;
Zukunft, B. ;
Hoffmann, C. ;
Zidek, W. ;
Schaefer, J. -H. .
BRITISH JOURNAL OF ANAESTHESIA, 2008, 100 (04) :451-456
[4]   Noninvasive Cardiac Output Determination: Broadening the Applicability of Hemodynamic Monitoring [J].
Compton, Friederike ;
Schaefer, Juergen-Heiner .
SEMINARS IN CARDIOTHORACIC AND VASCULAR ANESTHESIA, 2009, 13 (01) :44-55
[5]   A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques [J].
Critchley, LAH ;
Critchley, JAJH .
JOURNAL OF CLINICAL MONITORING AND COMPUTING, 1999, 15 (02) :85-91
[6]   COMPARISON OF SIMULTANEOUSLY RECORDED CENTRAL AND PERIPHERAL ARTERIAL PRESSURE PULSES DURING REST, EXERCISE AND TILTED POSITION IN MAN [J].
KROEKER, EJ ;
WOOD, EH .
CIRCULATION RESEARCH, 1955, 3 (06) :623-632
[7]   Transcardiopulmonary Thermodilution-Calibrated Arterial Waveform Analysis: A Primer for Anesthesiologists and Intensivists [J].
Laight, Nicola S. ;
Levin, Andrew I. .
JOURNAL OF CARDIOTHORACIC AND VASCULAR ANESTHESIA, 2015, 29 (04) :1051-1064
[8]   Sample Size for Assessing Agreement between Two Methods of Measurement by Bland-Altman Method [J].
Lu, Meng-Jie ;
Zhong, Wei-Hua ;
Liu, Yu-Xiu ;
Miao, Hua-Zhang ;
Li, Yong-Chang ;
Ji, Mu-Huo .
INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2016, 12 (02)
[9]   The Impact of Phenylephrine, Ephedrine, and Increased Preload on Third-Generation Vigileo-FloTrac and Esophageal Doppler Cardiac Output Measurements [J].
Meng, Lingzhong ;
Nam Phuong Tran ;
Alexander, Brenton S. ;
Laning, Kathleen ;
Chen, Guo ;
Kain, Zeev N. ;
Cannesson, Maxime .
ANESTHESIA AND ANALGESIA, 2011, 113 (04) :751-757
[10]   Arterial pressure-based cardiac output in septic patients: different accuracy of pulse contour and uncalibrated pressure waveform devices [J].
Monnet, Xavier ;
Anguel, Nadia ;
Naudin, Brice ;
Jabot, Julien ;
Richard, Christian ;
Teboul, Jean-Louis .
CRITICAL CARE, 2010, 14 (03)