The abelian part of a compatible system and l-independence of the Tate conjecture

被引:0
作者
Hui, Chun Yin [1 ]
机构
[1] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
关键词
ALGEBRAIC MONODROMY GROUPS; L-ADIC REPRESENTATIONS; VARIETIES; POINTS;
D O I
10.1007/s00229-018-1068-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a number field and {V-l}(l) a rational strictly compatible system of semisimple Galois representations of K arising from geometry. Let G(l) and V-l(ab) be respectively the algebraic monodromy group and the maximal abelian subrepresentation of V-l for all l. We prove that the system {V-l(ab)}(l) is also a rational strictly compatible system under some group theoretic conditions, e.g., when G(l)' is connected and satisfies Hypothesis A for some prime l'. As an application, we prove that the Tate conjecture for abelian variety X/K is independent of l if the algebraic monodromy groups of the Galois representations of X satisfy the required conditions.
引用
收藏
页码:223 / 246
页数:24
相关论文
共 37 条
[1]  
Adams J.F., 1996, CHICAGO LECT MATH SE
[2]  
[Anonymous], 1988, Grundlehren der mathematischen Wissenschaften
[3]   Potential automorphy and change of weight [J].
Barnet-Lamb, Thomas ;
Gee, Toby ;
Geraghty, David ;
Taylor, Richard .
ANNALS OF MATHEMATICS, 2014, 179 (02) :501-609
[4]  
Bourbaki N., 1981, GROUPES ALGEBRES LIE
[6]   ON THE L-ADIC REPRESENTATIONS ATTACHED TO SIMPLE ABELIAN-VARIETIES OF TYPE-IV [J].
CHI, WC .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1991, 44 (01) :71-78
[7]   Independence of l of monodromy groups [J].
Chin, CW .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 17 (03) :723-747
[8]  
Clozel L., 1990, AUTOMORPHIC FORMS SH
[9]  
Deligne P., 1980, Publ. Math. Inst. Hautes tudes Sci, V52, P137
[10]  
DELIGNE P, 1982, LECT NOTES MATH, V900