On some extension of optimal control theory

被引:19
作者
Karamzin, Dmitry Yu. [1 ,2 ]
de Oliveira, Valeriano A. [1 ]
Pereira, Fernando L. [3 ]
Silva, Geraldo N. [1 ]
机构
[1] UNESP Univ Estadual Paulista, Inst Biociencias Letras & Ciencias Exatas, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
[2] Comp Ctr RAS, Moscow 119991, Russia
[3] Univ Porto, Fac Engn, P-4200465 Oporto, Portugal
基金
巴西圣保罗研究基金会; 俄罗斯基础研究基金会;
关键词
Optimal control; Impulsive controls; Maximum principle; STATE CONSTRAINTS; OPTIMIZATION; SYSTEMS;
D O I
10.1016/j.ejcon.2014.09.003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Some problems of Calculus of Variations do not have solutions in the class of classic continuous and smooth arcs. This suggests the need of a relaxation or extension of the problem ensuring the existence of a solution in some enlarged class of arcs. This work aims at the development of an extension for a more general optimal control problem with nonlinear control dynamics in which the control function takes values in some closed, but not necessarily bounded, set. To achieve this goal, we exploit the approach of R.V. Gamkrelidze based on the generalized controls, but related to discontinuous arcs. This leads to the notion of generalized impulsive control. The proposed extension links various approaches on the issue of extension found in the literature. (C) 2014 European Control Association. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:284 / 291
页数:8
相关论文
共 32 条
[1]  
[Anonymous], J SOVIET MATH, DOI 10.1007/BF01373649
[2]  
[Anonymous], DEDICATED L CHISHOLM
[3]  
[Anonymous], 1965, J. Soc. Ind. Appl. Math. Ser. A Control, DOI [DOI 10.1137/0303016, 10.1137/0303016]
[4]  
[Anonymous], T MAT I STEKLOVA
[5]  
[Anonymous], B AM MATH SOC
[6]   Pontryagin's maximum principle for constrained impulsive control problems [J].
Arutyunov, A. V. ;
Karamzin, D. Yu. ;
Pereira, F. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (03) :1045-1057
[7]   The Maximum Principle for Optimal Control Problems with State Constraints by RV Gamkrelidze: Revisited [J].
Arutyunov, A. V. ;
Karamzin, D. Y. ;
Pereira, F. L. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 149 (03) :474-493
[8]  
Arutyunov A.V., 2000, Optimality condition: abnormal and degenerate problems
[9]   ON A GENERALIZATION OF THE IMPULSIVE CONTROL CONCEPT: CONTROLLING SYSTEM JUMPS [J].
Arutyunov, Aram ;
Karamzin, Dmitry ;
Pereira, Fernando L. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 29 (02) :403-415
[10]   STATE CONSTRAINTS IN OPTIMAL-CONTROL - THE DEGENERACY PHENOMENON [J].
ARUTYUNOV, AV ;
ASEEV, SM .
SYSTEMS & CONTROL LETTERS, 1995, 26 (04) :267-273