WS2/Carbon Composites and Nanoporous Carbon Structures Derived from Zeolitic Imidazole Framework for Asymmetrical Supercapacitors

被引:27
作者
Shrivastav, Vishal [1 ,2 ]
Sundriyal, Shashank [3 ]
Shrivastav, Vaishali [1 ]
Tiwari, Umesh K. [1 ,2 ]
Deep, Akash [1 ,2 ]
机构
[1] CSIR Cent Sci Instrument Org CSIR CSIO, Chandigarh 160030, India
[2] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India
[3] CSIR Natl Phys Lab CSIR NPL, New Delhi 110012, India
关键词
METAL-ORGANIC FRAMEWORK; ELECTRODE MATERIALS; ENERGY-STORAGE; CHARGE STORAGE; PERFORMANCE; IMPEDANCE; SURFACE;
D O I
10.1021/acs.energyfuels.1c02033
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Transition metal dichalcogenides (TMDs) are generating immense research interest in the field of supercapacitors owing to their 2D morphology and other existing material properties. Nonetheless, more research efforts are needed to address their low conductivity and relatively poor cycle stability. In the present work, an asymmetrical supercapacitor (ASC) is assembled using a WS2/carbon composite as a positive electrode and nanoporous carbon (NPC) (derived from zeolitic imidazolate framework (ZIF-8)) as a negative electrode. In the presence of 1 M H2SO4 aqueous electrolyte, the above ASC has yielded excellent electrochemical performance due to the efficient combination of the feature of redox active WS2 nanorods and highly conductive NPC. In individual studies, the WS2/Z8-800 (positive) and Z8-800 (negative) electrodes have delivered specific capacitances of 248.7 and 437.6 F/g, respectively. The full ASC has been charged-balanced to fabricate a 1.4 V device, which has delivered an energy density of 25 Wh/kg upon discharging at a power rate of 801 W/kg. The study should also open up future opportunities to explore other sulfide based TMDs in conjugation with nanoporous carbon for the development of advanced supercapacitors.
引用
收藏
页码:15133 / 15142
页数:10
相关论文
共 36 条
[1]   INNER AND OUTER ACTIVE SURFACE OF RUO2 ELECTRODES [J].
ARDIZZONE, S ;
FREGONARA, G ;
TRASATTI, S .
ELECTROCHIMICA ACTA, 1990, 35 (01) :263-267
[2]   Supercapacitors based on graphene-polyaniline derivative nanocomposite electrode materials [J].
Basnayaka, Punya A. ;
Ram, Manoj K. ;
Stefanakos, Elias K. ;
Kumar, Ashok .
ELECTROCHIMICA ACTA, 2013, 92 :376-382
[3]   Nickel Cobalt Sulfide core/shell structure on 3D Graphene for supercapacitor application [J].
Beka, Lemu Girma ;
Li, Xin ;
Liu, Weihua .
SCIENTIFIC REPORTS, 2017, 7
[4]   Impedance-based simulation models of supercapacitors and Li-ion batteries for power electronic applications [J].
Buller, S ;
Thele, M ;
De Doncker, RWAA ;
Karden, E .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2005, 41 (03) :742-747
[5]   Fast preparation of ultrafine monolayered transition-metal dichalcogenide quantum dots using electrochemical shock for explosive detection [J].
Chen, Zhigang ;
Tao, Zhengxu ;
Cong, Shan ;
Hou, Junyu ;
Zhang, Dengsong ;
Geng, Fengxia ;
Zhao, Zhigang .
CHEMICAL COMMUNICATIONS, 2016, 52 (76) :11442-11445
[6]   Hierarchically Structured Ni3S2/Carbon Nanotube Composites as High Performance Cathode Materials for Asymmetric Supercapacitors [J].
Dai, Chao-Shuan ;
Chien, Pei-Yi ;
Lin, Jeng-Yu ;
Chou, Shu-Wei ;
Wu, Wen-Kai ;
Li, Ping-Hsuan ;
Wu, Kuan-Yi ;
Lin, Tsung-Wu .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (22) :12168-12174
[7]   Fabrication of Hierarchical Porous Metal-Organic Framework Electrode for Aqueous Asymmetric Supercapacitor [J].
Gao, Weimin ;
Chen, Dezhi ;
Quan, Hongying ;
Zou, Ren ;
Wang, Wenxiu ;
Luo, Xubiao ;
Guo, Lin .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (05) :4144-4153
[8]   Charge storage mechanism of sonochemically prepared MnO2 as supercapacitor electrode:: Effects of physisorbed water and proton conduction [J].
Ghaemi, M. ;
Ataherian, F. ;
Zolfaghari, A. ;
Jafari, S. M. .
ELECTROCHIMICA ACTA, 2008, 53 (14) :4607-4614
[9]   Redox-active organic molecules functionalized nitrogen-doped porous carbon derived from metal-organic framework as electrode materials for supercapacitor [J].
Guo, Bingshu ;
Yang, Yuying ;
Hu, Zhongai ;
An, Yufeng ;
Zhang, Quancai ;
Yang, Xia ;
Wang, Xiaotong ;
Wu, Hongying .
ELECTROCHIMICA ACTA, 2017, 223 :74-84
[10]   Hydrogen storage in different carbon materials: Influence of the porosity development by chemical activation [J].
Jimenez, Vicente ;
Ramirez-Lucas, Ana ;
Sanchez, Paula ;
Luis Valverde, Jose ;
Romero, Amaya .
APPLIED SURFACE SCIENCE, 2012, 258 (07) :2498-2509