CO-REPRESENTATIONS OF HOPF-VON NEUMANN ALGEBRAS ON OPERATOR SPACES OTHER THAN COLUMN HILBERT SPACE

被引:4
作者
Runde, Volker [1 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
关键词
Hopf-von Neumann algebra; co-representation; reflexive operator space; operator algebra; column Hilbert space;
D O I
10.1017/S000497271000016X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, Daws introduced a notion of co-representation of abelian Hopf-von Neumann algebras on general reflexive Banach spaces. In this note, we show that this notion cannot be extended beyond subhomogeneous Hopf-von Neumann algebras. The key is our observation that, for a von Neumann algebra m and a reflexive operator space E, the normal spatial tensor product m (circle times) over bar CB(E) is a Banach algebra if and only if m is subhomogeneous or E is completely isomorphic to column Hilbert space.
引用
收藏
页码:205 / 210
页数:6
相关论文
共 9 条
[1]  
[Anonymous], 1964, Bull. Soc. Math. France, DOI DOI 10.24033/BSMF.1607
[2]  
[Anonymous], 2004, LONDON MATH SOC MONO
[3]   A COMPLETELY BOUNDED CHARACTERIZATION OF OPERATOR-ALGEBRAS [J].
BLECHER, DP .
MATHEMATISCHE ANNALEN, 1995, 303 (02) :227-239
[4]  
BURCKEL RB, 1970, WEAKLY ALMOST PERIOD
[5]   Weakly almost periodic functionals on the measure algebra [J].
Daws, Matthew .
MATHEMATISCHE ZEITSCHRIFT, 2010, 265 (02) :285-296
[6]  
Effros E.G., 2000, Operator Spaces
[7]  
Grothendieck A., 1952, Amer. J. Math., V74, P168, DOI 10.2307/2372076
[9]  
Pisier G., 1998, ASTERISQUE, V247