Performance of a novel risk model for deep sternal wound infection after coronary artery bypass grafting

被引:3
作者
Maglia Orlandi, Bianca Maria [1 ,2 ]
Vilca Mejia, Omar Asdrubal [1 ,3 ]
Sorio, Jennifer Loria [4 ,5 ]
E Silva, Pedro de Barros [3 ]
Praca Oliveira, Marco Antonio [6 ]
Nakazone, Marcelo Arruda [7 ]
Tiveron, Marcos Gradim [8 ]
Campagnucci, Valquiria Pelliser [9 ]
Ferreira Lisboa, Luiz Augusto [1 ]
Zubelli, Jorge [10 ]
Normand, Sharon-Lise [2 ,11 ]
Jatene, Fabio Biscegli [1 ]
机构
[1] Inst Coracao Hosp Clin, Dept Cardiovasc Surg, Fac Med Estado Sao Paulo INCOR, Sao Paulo, Brazil
[2] Harvard Med Sch, Dept Hlth Care Policy, Boston, MA USA
[3] Hosp Samaritano Paulista, Dept Cardiovasc Surg, Sao Paulo, Brazil
[4] Univ Costa Rica, San Jose, Costa Rica
[5] Inst Matemat Pura & Aplicada IMPA, Rio De Janeiro, Brazil
[6] Beneficencia Portuguesa Sao Paulo, Dept Cardiovasc Surg, Sao Paulo, Brazil
[7] Fac Med Sao Jose Rio Preto, Sao Paulo, Brazil
[8] Irmandade Santa Casa Misericordia Marilia, Dept Cardiovasc Surg, Marilia, SP, Brazil
[9] Irmandade Santa Casa Misericordia Sao Paulo, Dept Cardiovasc Surg, Sao Paulo, Brazil
[10] Khalifa Univ, Abu Dhabi, U Arab Emirates
[11] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
基金
巴西圣保罗研究基金会;
关键词
CARDIAC-SURGERY; PREDICTION MODELS; MEDIASTINITIS; MORTALITY; DISCRIMINATION; CALIBRATION;
D O I
10.1038/s41598-022-19473-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Clinical prediction models for deep sternal wound infections (DSWI) after coronary artery bypass graft (CABG) surgery exist, although they have a poor impact in external validation studies. We developed and validated a new predictive model for 30-day DSWI after CABG (REPINF) and compared it with the Society of Thoracic Surgeons model (STS). The REPINF model was created through a multicenter cohort of adults undergoing CABG surgery (REPLICCAR II Study) database, using least absolute shrinkage and selection operator (LASSO) logistic regression, internally and externally validated comparing discrimination, calibration in-the-large (CL), net reclassification improvement (NRI) and integrated discrimination improvement (IDI), trained between the new model and the STS PredDeep, a validated model for DSWI after cardiac surgery. In the validation data, c-index = 0.83 (95% CI 0.72-0.95). Compared to the STS PredDeep, predictions improved by 6.5% (IDI). However, both STS and REPINF had limited calibration. Different populations require independent scoring systems to achieve the best predictive effect. The external validation of REPINF across multiple centers is an important quality improvement tool to generalize the model and to guide healthcare professionals in the prevention of DSWI after CABG surgery.
引用
收藏
页数:8
相关论文
共 35 条
  • [1] Discrimination and Calibration of Clinical Prediction Models Users' Guides to the Medical Literature
    Alba, Ana Carolina
    Agoritsas, Thomas
    Walsh, Michael
    Hanna, Steven
    Iorio, Alfonso
    Devereaux, P. J.
    McGinn, Thomas
    Guyatt, Gordon
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (14): : 1377 - 1384
  • [2] Effect of Variable Selection Strategy on the Performance of Prognostic Models When Using Multiple Imputation
    Austin, Peter C.
    Lee, Douglas S.
    Ko, Dennis T.
    White, Ian R.
    [J]. CIRCULATION-CARDIOVASCULAR QUALITY AND OUTCOMES, 2019, 12 (11):
  • [3] Validation of MagedanzSCORE as a predictor of mediastinitis after coronary artery bypass graft surgery
    Barros de Oliveira Sa, Michel Pompeu
    Figueira, Evelyn Soares
    Santos, Cecilia Andrade
    Figueiredo, Omar Jacobina
    Albuquerque Lima, Renato Oliveira
    de Rueda, Fabio Goncalves
    de Escobar, Rodrigo Renda
    Macario Nunes Soares, Alexandre Magno
    Lima, Ricardo de Carvalho
    [J]. REVISTA BRASILEIRA DE CIRURGIA CARDIOVASCULAR, 2011, 26 (03): : 386 - 392
  • [4] Centers for Disease Control and Prevention Guideline for the Prevention of Surgical Site Infection, 2017
    Berrios, Sandra I.
    Umscheid, Craig A.
    Bratzler, Dale W.
    Leas, Brian
    Stone, Erin C.
    Kelz, Rachel R.
    Reinke, Caroline E.
    Morgan, Sherry
    Solomkin, Joseph S.
    Mazuski, John E.
    Dellinger, E. Patchen
    Itani, Kamal M. F.
    Berbari, Elie F.
    Segreti, John
    Parvizi, Javad
    Blanchard, Joan
    Allen, George
    Kluytmans, Jan A. J. W.
    Donlan, Rodney
    Schecter, William P.
    [J]. JAMA SURGERY, 2017, 152 (08) : 784 - 791
  • [5] Improved Risk Adjustment in Public Reporting: Coronary Artery Bypass Graft Surgical Site Infections
    Berrios-Torres, Sandra I.
    Mu, Yi
    Edwards, Jonathan R.
    Horan, Teresa C.
    Fridkin, Scott K.
    [J]. INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY, 2012, 33 (05) : 463 - 469
  • [6] Preoperative risk stratification of deep sternal wound infection after coronary surgery
    Biancari, Fausto
    Gatti, Giuseppe
    Rosato, Stefano
    Mariscalco, Giovanni
    Pappalardo, Aniello
    Onorati, Francesco
    Faggian, Giuseppe
    Salsano, Antonio
    Santini, Francesco
    Ruggieri, Vito G.
    Perrotti, Andrea
    Santarpino, Giuseppe
    Fischlein, Theodor
    Saccocci, Matteo
    Musumeci, Francesco
    Rubino, Antonino S.
    De Feo, Marisa
    Bancone, Ciro
    Nicolini, Francesco
    Kinnunen, Eeva-Maija
    Demal, Till
    D'Errigo, Paola
    Juvonen, Tatu
    Dalen, Magnus
    Maselli, Daniele
    [J]. INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY, 2020, 41 (04) : 444 - 451
  • [7] An update review on risk factors and scales for prediction of deep sternal wound infections
    Buja, Alessandra
    Zampieron, Alessandra
    Cavalet, Sara
    Chiffi, Daniele
    Sandona, Paolo
    Vinelli, Angela
    Baldovin, Tatjana
    Baldo, Vincenzo
    [J]. INTERNATIONAL WOUND JOURNAL, 2012, 9 (04) : 372 - 386
  • [8] A New Surgical Site Infection Risk Score: Infection Risk Index in Cardiac Surgery
    Bustamante-Munguira, Juan
    Herrera-Gomez, Francisco
    Ruiz-Alvarez, Miguel
    Hernandez-Aceituno, Ana
    Figuerola-Tejerina, Angels
    [J]. JOURNAL OF CLINICAL MEDICINE, 2019, 8 (04):
  • [9] Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.7326/M14-0697, 10.1136/bmj.g7594, 10.1016/j.jclinepi.2014.11.010, 10.1038/bjc.2014.639, 10.1002/bjs.9736, 10.1016/j.eururo.2014.11.025, 10.1186/s12916-014-0241-z, 10.7326/M14-0698]
  • [10] Quantifying the added value of new biomarkers: how and how not
    Nancy R. Cook
    [J]. Diagnostic and Prognostic Research, 2 (1)