A Boolean Approach to Linear Prediction for Signaling Network Modeling

被引:10
作者
Eduati, Federica [1 ]
Corradin, Alberto [1 ]
Di Camillo, Barbara [1 ]
Toffolo, Gianna [1 ]
机构
[1] Univ Padua, Dept Informat Engn, Padua, Italy
关键词
D O I
10.1371/journal.pone.0012789
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The task of the DREAM4 (Dialogue for Reverse Engineering Assessments and Methods) "Predictive signaling network modeling" challenge was to develop a method that, from single-stimulus/inhibitor data, reconstructs a cause-effect network to be used to predict the protein activity level in multi-stimulus/inhibitor experimental conditions. The method presented in this paper, one of the best performing in this challenge, consists of 3 steps: 1. Boolean tables are inferred from singlestimulus/inhibitor data to classify whether a particular combination of stimulus and inhibitor is affecting the protein. 2. A cause-effect network is reconstructed starting from these tables. 3. Training data are linearly combined according to rules inferred from the reconstructed network. This method, although simple, permits one to achieve a good performance providing reasonable predictions based on a reconstructed network compatible with knowledge from the literature. It can be potentially used to predict how signaling pathways are affected by different ligands and how this response is altered by diseases.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 10 条
[1]   Networks Inferred from Biochemical Data Reveal Profound Differences in Toll-like Receptor and Inflammatory Signaling between Normal and Transformed Hepatocytes [J].
Alexopoulos, Leonidas G. ;
Saez-Rodriguez, Julio ;
Cosgrove, Benjamin D. ;
Lauffenburger, Douglas A. ;
Sorger, Peter K. .
MOLECULAR & CELLULAR PROTEOMICS, 2010, 9 (09) :1849-1865
[2]  
Cobelli C., 2000, TRACER KINETICS BIOM
[3]   A quantization method based on threshold optimization for microarray short time series [J].
Di Camillo, B ;
Sanchez-Cabo, F ;
Toffolo, G ;
Nair, SK ;
Trajanoski, Z ;
Cobelli, C .
BMC BIOINFORMATICS, 2005, 6 (Suppl 4)
[4]   Significance analysis of microarray transcript levels in time series experiments [J].
Di Camillo, Barbara ;
Toffolo, Gianna ;
Nair, Sreekumaran K. ;
Greenlund, Laura J. ;
Cobelli, Claudio .
BMC BIOINFORMATICS, 2007, 8 (Suppl 1)
[5]   Pathways to cancer therapy [J].
Jones, Dan .
NATURE REVIEWS DRUG DISCOVERY, 2008, 7 (11) :874-875
[6]   Identification of Potential Pathway Mediation Targets in Toll-like Receptor Signaling [J].
Li, Fan ;
Thiele, Ines ;
Jamshidi, Neema ;
Palsson, Bernhard O. .
PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (02)
[7]   Identifying Drug Effects via Pathway Alterations using an Integer Linear Programming Optimization Formulation on Phosphoproteomic Data [J].
Mitsos, Alexander ;
Melas, Ioannis N. ;
Siminelakis, Paraskeuas ;
Chairakaki, Aikaterini D. ;
Saez-Rodriguez, Julio ;
Alexopoulos, Leonidas G. .
PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (12)
[8]   Towards a Rigorous Assessment of Systems Biology Models: The DREAM3 Challenges [J].
Prill, Robert J. ;
Marbach, Daniel ;
Saez-Rodriguez, Julio ;
Sorger, Peter K. ;
Alexopoulos, Leonidas G. ;
Xue, Xiaowei ;
Clarke, Neil D. ;
Altan-Bonnet, Gregoire ;
Stolovitzky, Gustavo .
PLOS ONE, 2010, 5 (02)
[9]   Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction [J].
Saez-Rodriguez, Julio ;
Alexopoulos, Leonidas G. ;
Epperlein, Jonathan ;
Samaga, Regina ;
Lauffenburger, Douglas A. ;
Klamt, Steffen ;
Sorger, Peter K. .
MOLECULAR SYSTEMS BIOLOGY, 2009, 5
[10]   Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles [J].
Subramanian, A ;
Tamayo, P ;
Mootha, VK ;
Mukherjee, S ;
Ebert, BL ;
Gillette, MA ;
Paulovich, A ;
Pomeroy, SL ;
Golub, TR ;
Lander, ES ;
Mesirov, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (43) :15545-15550