DIFFUSIVITY IN ONE-DIMENSIONAL GENERALIZED MOTT VARIABLE-RANGE HOPPING MODELS

被引:13
作者
Caputo, P. [1 ]
Faggionato, A. [2 ]
机构
[1] Univ Roma Tre, Dipartimento Matemat, I-00146 Rome, Italy
[2] Univ Roma La Sapienza, Dipartimento Matemat G Castelnuovo, I-00185 Rome, Italy
关键词
Random walk in random environment; point process; invariance principle; diffusion coefficient; spectral gap; isoperimetric constant; REVERSIBLE MARKOV-PROCESSES; RANDOM-WALK; INVARIANCE-PRINCIPLE; PERCOLATION CLUSTERS; RANDOM ENVIRONMENT; CONDUCTIVITY; WIRES; LAW;
D O I
10.1214/08-AAP583
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider random walks in a random environment which are generalized versions of well-known effective models for Mott variable-range hopping. We study the homogenized diffusion constant of the random walk in the one-dimensional case. We prove various estimates on the low-temperature behavior which confirm and extend previous work by physicists.
引用
收藏
页码:1459 / 1494
页数:36
相关论文
共 24 条
[1]   VARIABLE RANGE HOPPING IN ONE-DIMENSIONAL METALS [J].
ALEXANDER, S .
PHYSICAL REVIEW B, 1982, 26 (06) :2956-2962
[2]   HOPPING CONDUCTIVITY IN DISORDERED SYSTEMS [J].
AMBEGAOKAR, V ;
HALPERIN, BI ;
LANGER, JS .
PHYSICAL REVIEW B-SOLID STATE, 1971, 4 (08) :2612-+
[3]  
[Anonymous], 1984, CARUS MATH MONOGRAPH
[4]   Quenched invariance principle for simple random walk on percolation clusters [J].
Berger, Noam ;
Biskup, Marek .
PROBABILITY THEORY AND RELATED FIELDS, 2007, 137 (1-2) :83-120
[5]  
Billingsley P., 1968, CONVERGENCE PROBABIL
[6]  
BREIMAN L, 1953, PROBABILITY
[7]   Isoperimetric inequalities and mixing time for a random walk on a random point process [J].
Caputo, Pietro ;
Faggionato, Alessandra .
ANNALS OF APPLIED PROBABILITY, 2007, 17 (5-6) :1707-1744
[8]  
Daley Daryl J, 2008, An introduction to the theory of point processes: volume II: general theory and structure, V2
[9]   AN INVARIANCE-PRINCIPLE FOR REVERSIBLE MARKOV-PROCESSES - APPLICATIONS TO RANDOM MOTIONS IN RANDOM-ENVIRONMENTS [J].
DEMASI, A ;
FERRARI, PA ;
GOLDSTEIN, S ;
WICK, WD .
JOURNAL OF STATISTICAL PHYSICS, 1989, 55 (3-4) :787-855
[10]  
Embrechts B., 1997, APPL MATH NEW YORK, V33