Legendre-Chebyshev spectral collocation method for two-dimensional nonlinear reaction-diffusion equation with Riesz space-fractional

被引:17
|
作者
Abdelkawy, M. A. [1 ,2 ]
Alyami, S. A. [1 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ, Fac Sci, Dept Math & Stat, Riyadh, Saudi Arabia
[2] Beni Suef Univ, Fac Sci, Dept Math & Comp Sci, Bani Suwayf, Egypt
关键词
Collocation method; Shifted Legendre-Gauss-Lobatto quadrature; Shifted Chebyshev Gauss-Radau quadrature; Riesz space-fractional Derivative; COMPACT ADI SCHEME; CONVERGENCE ANALYSIS; NUMERICAL-SOLUTION; GAUSS-COLLOCATION; APPROXIMATION; SIMULATIONS; DIFFERENCE; ALGORITHM; TRANSPORT;
D O I
10.1016/j.chaos.2021.111279
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A high accurate spectral algorithm for two-dimensional nonlinear reaction-diffusion equation with Riesz space-fractional (RF-TNRDEs) is consider. We propose a shifted Legendre Gauss-Lobatto collocation (SL GL-C) method in conjunction with shifted Chebyshev Gauss-Radau collocation (SC-GR-C) method to solve the RF-TNRDEs. A complete theoretical formulation is presented and numerical examples are given to illustrate the performance and efficiency of the algorithm. The superiority of the scheme to tackle RFTNRDEs is revealed. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] A Linearized Spectral-Galerkin Method for Three-Dimensional Riesz-Like Space Fractional Nonlinear Coupled Reaction-Diffusion Equations
    Guo, Shimin
    Yan, Wenjing
    Mei, Liquan
    Wang, Ying
    Wang, Lingling
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2021, 14 (03): : 738 - 772
  • [42] A FAST FINITE DIFFERENCE METHOD FOR TWO-DIMENSIONAL SPACE-FRACTIONAL DIFFUSION EQUATIONS
    Wang, Hong
    Basu, Treena S.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (05): : A2444 - A2458
  • [43] A Space-Time Spectral Collocation Method for Two-Dimensional Variable-Order Space-Time Fractional Advection–Diffusion Equation
    Rupali Gupta
    Sushil Kumar
    International Journal of Applied and Computational Mathematics, 2025, 11 (2)
  • [44] Fast implicit integration factor method for nonlinear space Riesz fractional reaction-diffusion equations
    Jian, Huan-Yan
    Huang, Ting-Zhu
    Gu, Xian-Ming
    Zhao, Xi-Le
    Zhao, Yong-Liang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 378 (378)
  • [45] A Novel Fourth-Order Scheme for Two-Dimensional Riesz Space Fractional Nonlinear Reaction-Diffusion Equations and Its Optimal Preconditioned Solver
    Qu, Wei
    Huang, Yuan-Yuan
    Hon, Sean
    Lei, Siu-Long
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2025, 32 (01)
  • [46] High-order time-stepping methods for two-dimensional Riesz fractional nonlinear reaction-diffusion equations
    Yousuf, M.
    Furati, K. M.
    Khaliq, A. Q. M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (01) : 204 - 226
  • [47] Two-Dimensional Time-Fractional Nonlinear Drift Reaction-Diffusion Equation Arising in Electrical Field
    Leung, Andrew Y. T.
    Das, Subir
    FRACTAL AND FRACTIONAL, 2024, 8 (08)
  • [48] A numerical method for solving the two-dimensional distributed order space-fractional diffusion equation on an irregular convex domain
    Fan, Wenping
    Liu, Fawang
    APPLIED MATHEMATICS LETTERS, 2018, 77 : 114 - 121
  • [49] Numerical inversion of reaction parameter for a time-fractional diffusion equation by Legendre spectral collocation and mollification method
    Zhang, Wen
    Ding, Zirong
    Wang, Zewen
    Ruan, Zhousheng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 128 : 188 - 197
  • [50] Linearized stable spectral method to analyze two-dimensional nonlinear evolutionary and reaction-diffusion models
    Hamid, Muhammad
    Usman, Muhammad
    UI Haq, Rizwan
    Tian, Zhenfu
    Wang, Wei
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2022, 38 (02) : 243 - 261