Legendre-Chebyshev spectral collocation method for two-dimensional nonlinear reaction-diffusion equation with Riesz space-fractional

被引:17
|
作者
Abdelkawy, M. A. [1 ,2 ]
Alyami, S. A. [1 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ, Fac Sci, Dept Math & Stat, Riyadh, Saudi Arabia
[2] Beni Suef Univ, Fac Sci, Dept Math & Comp Sci, Bani Suwayf, Egypt
关键词
Collocation method; Shifted Legendre-Gauss-Lobatto quadrature; Shifted Chebyshev Gauss-Radau quadrature; Riesz space-fractional Derivative; COMPACT ADI SCHEME; CONVERGENCE ANALYSIS; NUMERICAL-SOLUTION; GAUSS-COLLOCATION; APPROXIMATION; SIMULATIONS; DIFFERENCE; ALGORITHM; TRANSPORT;
D O I
10.1016/j.chaos.2021.111279
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A high accurate spectral algorithm for two-dimensional nonlinear reaction-diffusion equation with Riesz space-fractional (RF-TNRDEs) is consider. We propose a shifted Legendre Gauss-Lobatto collocation (SL GL-C) method in conjunction with shifted Chebyshev Gauss-Radau collocation (SC-GR-C) method to solve the RF-TNRDEs. A complete theoretical formulation is presented and numerical examples are given to illustrate the performance and efficiency of the algorithm. The superiority of the scheme to tackle RFTNRDEs is revealed. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] A space-time Legendre spectral tau method for the two-sided space-time Caputo fractional diffusion-wave equation
    Bhrawy, A. H.
    Zaky, M. A.
    Van Gorder, R. A.
    NUMERICAL ALGORITHMS, 2016, 71 (01) : 151 - 180
  • [32] Jacobi spectral method for the fractional reaction-diffusion equation arising in ecology
    Singh, Harendra
    Pathak, Ramta Ram
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (06) : 5031 - 5045
  • [33] A new spectral integral equation method for solving two-dimensional unsteady advection-diffusion equations via Chebyshev polynomials
    Yousefi, Mohsen Hadadian Nejad
    Najafabadi, Seyed Hossein Ghoreishi
    Tohidi, Emran
    ENGINEERING COMPUTATIONS, 2019, 36 (07) : 2327 - 2368
  • [34] Space-time Legendre-Gauss-Lobatto collocation method for two-dimensional generalized sine-Gordon equation
    Shan, Yingying
    Liu, Wenjie
    Wu, Boying
    APPLIED NUMERICAL MATHEMATICS, 2017, 122 : 92 - 107
  • [35] A Jacobi spectral collocation method for solving multi-dimensional nonlinear fractional sub-diffusion equations
    Bhrawy, A. H.
    NUMERICAL ALGORITHMS, 2016, 73 (01) : 91 - 113
  • [36] Numerical treatment of a two-dimensional variable-order fractional nonlinear reaction-diffusion model
    Liu, Fawang
    Zhuang, Pinghui
    Turner, Ian
    Anh, Vo
    Burrage, Kevin
    2014 INTERNATIONAL CONFERENCE ON FRACTIONAL DIFFERENTIATION AND ITS APPLICATIONS (ICFDA), 2014,
  • [37] Numerical simulation for nonlinear space-fractional reaction convection-diffusion equation with its application
    Anley, Eyaya Fekadie
    Basha, Merfat
    Hussain, Arafat
    Dai, Binxiang
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 65 : 245 - 261
  • [38] A fast numerical method for two-dimensional Riesz space fractional diffusion equations on a convex bounded region
    Chen, S.
    Liu, F.
    Turner, I
    Anh, V
    APPLIED NUMERICAL MATHEMATICS, 2018, 134 : 66 - 80
  • [39] A Robust Preconditioner for Two-dimensional Conservative Space-Fractional Diffusion Equations on Convex Domains
    Chen, Xu
    Deng, Si-Wen
    Lei, Siu-Long
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (02) : 1033 - 1057
  • [40] Fourier spectral method for higher order space fractional reaction-diffusion equations
    Pindza, Edson
    Owolabi, Kolade M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 40 : 112 - 128