Legendre-Chebyshev spectral collocation method for two-dimensional nonlinear reaction-diffusion equation with Riesz space-fractional

被引:17
|
作者
Abdelkawy, M. A. [1 ,2 ]
Alyami, S. A. [1 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ, Fac Sci, Dept Math & Stat, Riyadh, Saudi Arabia
[2] Beni Suef Univ, Fac Sci, Dept Math & Comp Sci, Bani Suwayf, Egypt
关键词
Collocation method; Shifted Legendre-Gauss-Lobatto quadrature; Shifted Chebyshev Gauss-Radau quadrature; Riesz space-fractional Derivative; COMPACT ADI SCHEME; CONVERGENCE ANALYSIS; NUMERICAL-SOLUTION; GAUSS-COLLOCATION; APPROXIMATION; SIMULATIONS; DIFFERENCE; ALGORITHM; TRANSPORT;
D O I
10.1016/j.chaos.2021.111279
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A high accurate spectral algorithm for two-dimensional nonlinear reaction-diffusion equation with Riesz space-fractional (RF-TNRDEs) is consider. We propose a shifted Legendre Gauss-Lobatto collocation (SL GL-C) method in conjunction with shifted Chebyshev Gauss-Radau collocation (SC-GR-C) method to solve the RF-TNRDEs. A complete theoretical formulation is presented and numerical examples are given to illustrate the performance and efficiency of the algorithm. The superiority of the scheme to tackle RFTNRDEs is revealed. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Optimal error estimate of the Legendre spectral approximation for space-fractional reaction-advection-diffusion equation
    Chen, Wenping
    Lu, Shujuan
    Chen, Hu
    Liu, Haiyu
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [32] An efficient Galerkin spectral method for two-dimensional fractional nonlinear reaction-diffusion-wave equation
    Guo, Shimin
    Mei, Liquan
    Li, Ying
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (10) : 2449 - 2465
  • [33] The Fast Implementation of the ADI-CN Method for a Class of Two-Dimensional Riesz Space-Fractional Diffusion Equations
    Xing, Zhiyong
    Wen, Liping
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2019, 11 (04) : 942 - 956
  • [34] Spectral analysis and multigrid preconditioners for two-dimensional space-fractional diffusion equations
    Moghaderi, Hamid
    Dehghan, Mehdi
    Donatelli, Marco
    Mazza, Mariarosa
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 350 : 992 - 1011
  • [35] Numerical solution of two-dimensional nonlinear fractional order reaction-advection-diffusion equation by using collocation method
    Singh, Manpal
    Das, S.
    Rajeev
    Craciun, E-M
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2021, 29 (02): : 211 - 230
  • [36] Barycentric rational collocation method for fractional reaction-diffusion equation
    Li, Jin
    AIMS MATHEMATICS, 2023, 8 (04): : 9009 - 9026
  • [37] Modeling NO Biotransport in Brain Using a Space-Fractional Reaction-Diffusion Equation
    Tamis, Andrew
    Drapaca, Corina S.
    FRONTIERS IN PHYSIOLOGY, 2021, 12
  • [38] A LINEAR IMPLICIT L1-LEGENDRE GALERKIN CHEBYSHEV COLLOCATION METHOD FOR GENERALIZED TIME- AND SPACE-FRACTIONAL BURGERS EQUATION
    Yang, Yubo
    Ma, Heping
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2019, 37 (05) : 629 - 644
  • [39] Finite difference/spectral-Galerkin method for a two-dimensional distributed-order time-space fractional reaction-diffusion equation
    Guo, Shimin
    Mei, Liquan
    Zhang, Zhengqiang
    Jiang, Yutao
    APPLIED MATHEMATICS LETTERS, 2018, 85 : 157 - 163
  • [40] THE SPACE SPECTRAL INTERPOLATION COLLOCATION METHOD FOR REACTION-DIFFUSION SYSTEMS
    Zhang, Xiao-Li
    Zhang, Wei
    Wang, Yu-Lan
    Ban, Ting-Ting
    THERMAL SCIENCE, 2021, 25 (02): : 1269 - 1275