Legendre-Chebyshev spectral collocation method for two-dimensional nonlinear reaction-diffusion equation with Riesz space-fractional

被引:17
|
作者
Abdelkawy, M. A. [1 ,2 ]
Alyami, S. A. [1 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ, Fac Sci, Dept Math & Stat, Riyadh, Saudi Arabia
[2] Beni Suef Univ, Fac Sci, Dept Math & Comp Sci, Bani Suwayf, Egypt
关键词
Collocation method; Shifted Legendre-Gauss-Lobatto quadrature; Shifted Chebyshev Gauss-Radau quadrature; Riesz space-fractional Derivative; COMPACT ADI SCHEME; CONVERGENCE ANALYSIS; NUMERICAL-SOLUTION; GAUSS-COLLOCATION; APPROXIMATION; SIMULATIONS; DIFFERENCE; ALGORITHM; TRANSPORT;
D O I
10.1016/j.chaos.2021.111279
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A high accurate spectral algorithm for two-dimensional nonlinear reaction-diffusion equation with Riesz space-fractional (RF-TNRDEs) is consider. We propose a shifted Legendre Gauss-Lobatto collocation (SL GL-C) method in conjunction with shifted Chebyshev Gauss-Radau collocation (SC-GR-C) method to solve the RF-TNRDEs. A complete theoretical formulation is presented and numerical examples are given to illustrate the performance and efficiency of the algorithm. The superiority of the scheme to tackle RFTNRDEs is revealed. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Implicit Runge-Kutta and spectral Galerkin methods for the two-dimensional nonlinear Riesz space fractional diffusion equation
    Zhao, Jingjun
    Zhang, Yanming
    Xu, Yang
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 386
  • [22] A stabilized semi-implicit Fourier spectral method for nonlinear space-fractional reaction-diffusion equations
    Zhang, Hui
    Jiang, Xiaoyun
    Zeng, Fanhai
    Karniadakis, George Em
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 405
  • [23] Parameter Identification in the Two-Dimensional Riesz Space Fractional Diffusion Equation
    Brociek, Rafal
    Chmielowska, Agata
    Slota, Damian
    FRACTAL AND FRACTIONAL, 2020, 4 (03) : 1 - 10
  • [24] FIBONACCI COLLOCATION METHOD TO SOLVE TWO-DIMENSIONAL NONLINEAR FRACTIONAL ORDER ADVECTION-REACTION DIFFUSION EQUATION
    Dwivedi, Kushal Dhar
    Rajeev
    Das, S.
    SPECIAL TOPICS & REVIEWS IN POROUS MEDIA-AN INTERNATIONAL JOURNAL, 2019, 10 (06) : 569 - 584
  • [25] Legendre spectral collocation method for distributed and Riesz fractional convection–diffusion and Schrödinger-type equation
    M. A. Abdelkawy
    Mdi Begum Jeelani
    Abeer S. Alnahdi
    T. M. Taha
    E. M. Soluma
    Boundary Value Problems, 2022
  • [26] Legendre spectral collocation method for distributed and Riesz fractional convection-diffusion and Schrodinger-type equation
    Abdelkawy, M. A.
    Jeelani, Mdi Begum
    Alnahdi, Abeer S.
    Taha, T. M.
    Soluma, E. M.
    BOUNDARY VALUE PROBLEMS, 2022, 2022 (01)
  • [27] NUMERICAL STUDIES ON TWO-DIMENSIONAL SCHRODINGER EQUATION BY CHEBYSHEV SPECTRAL COLLOCATION METHOD
    Abdur, Rashid
    Ismail, Ahmad Izani Bin Md
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2011, 73 (01): : 101 - 110
  • [28] Numerical simulation for two-dimensional Riesz space fractional diffusion equations with a nonlinear reaction term
    Liu, Fawang
    Chen, Shiping
    Turner, Ian
    Burrage, Kevin
    Vo Anh
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2013, 11 (10): : 1221 - 1232
  • [29] A SPECTRAL LEGENDRE-GAUSS-LOBATTO COLLOCATION METHOD FOR A SPACE-FRACTIONAL ADVECTION DIFFUSION EQUATIONS WITH VARIABLE COEFFICIENTS
    Bhrawy, A. H.
    Baleanu, D.
    REPORTS ON MATHEMATICAL PHYSICS, 2013, 72 (02) : 219 - 233
  • [30] The finite volume element method for the two-dimensional space-fractional convection-diffusion equation
    Bi, Yanan
    Jiang, Ziwen
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)