Legendre-Chebyshev spectral collocation method for two-dimensional nonlinear reaction-diffusion equation with Riesz space-fractional

被引:17
|
作者
Abdelkawy, M. A. [1 ,2 ]
Alyami, S. A. [1 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ, Fac Sci, Dept Math & Stat, Riyadh, Saudi Arabia
[2] Beni Suef Univ, Fac Sci, Dept Math & Comp Sci, Bani Suwayf, Egypt
关键词
Collocation method; Shifted Legendre-Gauss-Lobatto quadrature; Shifted Chebyshev Gauss-Radau quadrature; Riesz space-fractional Derivative; COMPACT ADI SCHEME; CONVERGENCE ANALYSIS; NUMERICAL-SOLUTION; GAUSS-COLLOCATION; APPROXIMATION; SIMULATIONS; DIFFERENCE; ALGORITHM; TRANSPORT;
D O I
10.1016/j.chaos.2021.111279
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A high accurate spectral algorithm for two-dimensional nonlinear reaction-diffusion equation with Riesz space-fractional (RF-TNRDEs) is consider. We propose a shifted Legendre Gauss-Lobatto collocation (SL GL-C) method in conjunction with shifted Chebyshev Gauss-Radau collocation (SC-GR-C) method to solve the RF-TNRDEs. A complete theoretical formulation is presented and numerical examples are given to illustrate the performance and efficiency of the algorithm. The superiority of the scheme to tackle RFTNRDEs is revealed. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条