Legendre-Chebyshev spectral collocation method for two-dimensional nonlinear reaction-diffusion equation with Riesz space-fractional

被引:19
作者
Abdelkawy, M. A. [1 ,2 ]
Alyami, S. A. [1 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ, Fac Sci, Dept Math & Stat, Riyadh, Saudi Arabia
[2] Beni Suef Univ, Fac Sci, Dept Math & Comp Sci, Bani Suwayf, Egypt
关键词
Collocation method; Shifted Legendre-Gauss-Lobatto quadrature; Shifted Chebyshev Gauss-Radau quadrature; Riesz space-fractional Derivative; COMPACT ADI SCHEME; CONVERGENCE ANALYSIS; NUMERICAL-SOLUTION; GAUSS-COLLOCATION; APPROXIMATION; SIMULATIONS; DIFFERENCE; ALGORITHM; TRANSPORT;
D O I
10.1016/j.chaos.2021.111279
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A high accurate spectral algorithm for two-dimensional nonlinear reaction-diffusion equation with Riesz space-fractional (RF-TNRDEs) is consider. We propose a shifted Legendre Gauss-Lobatto collocation (SL GL-C) method in conjunction with shifted Chebyshev Gauss-Radau collocation (SC-GR-C) method to solve the RF-TNRDEs. A complete theoretical formulation is presented and numerical examples are given to illustrate the performance and efficiency of the algorithm. The superiority of the scheme to tackle RFTNRDEs is revealed. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 43 条
[1]   Neoteric formulas of the monic orthogonal Chebyshev polynomials of the sixth-kind involving moments and linearization formulas [J].
Abd-Elhameed, Waleed M. ;
Youssri, H. Youssri .
ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
[2]   Solution of Multi-Term Time-Fractional PDE Models Arising in Mathematical Biology and Physics by Local Meshless Method [J].
Ahmad, Imtiaz ;
Ahmad, Hijaz ;
Thounthong, Phatiphat ;
Chu, Yu-Ming ;
Cesarano, Clemente .
SYMMETRY-BASEL, 2020, 12 (07)
[3]   Shifted fifth-kind Chebyshev Galerkin treatment for linear hyperbolic first-order partial differential equations [J].
Atta, A. G. ;
Abd-Elhameed, W. M. ;
Moatimid, G. M. ;
Youssri, Y. H. .
APPLIED NUMERICAL MATHEMATICS, 2021, 167 :237-256
[4]   Efficient Spectral Collocation Algorithm for a Two-Sided Space Fractional Boussinesq Equation with Non-local Conditions [J].
Bhrawy, A. H. ;
Abdelkawy, M. A. ;
Ezz-Eldien, S. S. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (05) :2483-2506
[5]   A fully spectral collocation approximation formulti-dimensional fractional Schrodinger equations [J].
Bhrawy, A. H. ;
Abdelkawy, M. A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 294 :462-483
[6]   A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations [J].
Bhrawy, A. H. ;
Doha, E. H. ;
Baleanu, D. ;
Ezz-Eldien, S. S. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 :142-156
[7]   A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations [J].
Bhrawy, A. H. ;
Zaky, M. A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 281 :876-895
[8]   A shifted Legendre spectral method for fractional-order multi-point boundary value problems [J].
Bhrawy, Ali H. ;
Al-Shomrani, Mohammed M. .
ADVANCES IN DIFFERENCE EQUATIONS, 2012,
[9]   Anomalous diffusion associated with nonlinear fractional derivative Fokker-Planck-like equation: Exact time-dependent solutions [J].
Bologna, M ;
Tsallis, C ;
Grigolini, P .
PHYSICAL REVIEW E, 2000, 62 (02) :2213-2218
[10]   Crank-Nicolson ADI Galerkin finite element method for two-dimensional fractional FitzHugh-Nagumo monodomain model [J].
Bu, Weiping ;
Tang, Yifa ;
Wu, Yingchuan ;
Yang, Jiye .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 :355-364