Metallicity of Gamma-Ray Burst Progenitors: Connection between Star Formation and Gamma-Ray Burst Production

被引:0
作者
Niino, Y. [1 ]
Choi, J-H. [2 ]
Kobayashi, M. A. R. [3 ]
Nagamine, K. [2 ]
Totani, T. [1 ]
Zhang, B. [2 ]
机构
[1] Kyoto Univ, Dept Astron, Sch Sci, Sakyo Ku, Kitashirakawa Oiwake Cho, Kyoto 6068502, Japan
[2] Univ Nevada, Dept Phys & Astron, Reno, NV 89557 USA
[3] Natl Astron Observ Japan, Opt & Infrared Astron Div, Mitaka, Tokyo, Japan
来源
10TH INTERNATIONAL SYMPOSIUM ON ORIGIN OF MATTER AND EVOLUTION OF GALAXIES | 2010年 / 1269卷
关键词
gamma-ray burst; galaxy; metallicity; EVOLUTION;
D O I
10.1063/1.3485160
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Long Gamma-Ray Bursts (GRBs) are the brightest astronomical transient events which provide us clues to study high redshift universe. It is broadly accepted that at least some of the long GRBs originate from dying massive stars. Therefore GRBs can be used as a tracer of star formation which are detectable to very high redshift (z > 10). However, studies using stellar evolution models suggest that GRBs do not simply trace star formation, but preferentially occur in low-metallicity environment. The observational evidence is still controversial. We need to understand the low-metallicity preference of long GRBs before using them as a tracer of star formation. Using cosmological smoothed particle hydrodynamic simulations, we compute the UV luminosity distribution of GRB host galaxies for two different cases: (i) GRBs simply trace star formation, and (ii) GRBs preferentially occur in low-metallicity environment. We compare the simulation with observations, and discuss the low-metallicity preference of GRBs. We reproduce the observed luminosity probability distribution function of ORB host galaxies when we assume that GRBs originate from stars with metallicities Z less than or similar to 0.1Z(circle dot), supporting the suggestion from the theoretical studies.
引用
收藏
页码:345 / +
页数:2
相关论文
共 8 条
[1]   Stellar population synthesis at the resolution of 2003 [J].
Bruzual, G ;
Charlot, S .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2003, 344 (04) :1000-1028
[2]   Effects of metal enrichment and metal cooling in galaxy growth and cosmic star formation history [J].
Choi, Jun-Hwan ;
Nagamine, Kentaro .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 393 (04) :1595-1607
[3]   Long γ-ray bursts and core-collapse supernovae have different environments [J].
Fruchter, A. S. ;
Levan, A. J. ;
Strolger, L. ;
Vreeswijk, P. M. ;
Thorsett, S. E. ;
Bersier, D. ;
Burud, I. ;
Castro Ceron, J. M. ;
Castro-Tirado, A. J. ;
Conselice, C. ;
Dahlen, T. ;
Ferguson, H. C. ;
Fynbo, J. P. U. ;
Garnavich, P. M. ;
Gibbons, R. A. ;
Gorosabel, J. ;
Gull, T. R. ;
Hjorth, J. ;
Holland, S. T. ;
Kouveliotou, C. ;
Levay, Z. ;
Livio, M. ;
Metzger, M. R. ;
Nugent, P. E. ;
Petro, L. ;
Pian, E. ;
Rhoads, J. E. ;
Riess, A. G. ;
Sahu, K. C. ;
Smette, A. ;
Tanvir, N. R. ;
Wijers, R. A. M. J. ;
Woosley, S. E. .
NATURE, 2006, 441 (7092) :463-468
[4]   The Gemini Deep Deep Survey. VII. The redshift evolution of the mass-metallicity relation [J].
Savaglio, S ;
Glazebrook, K ;
Le Borgne, D ;
Juneau, S ;
Abraham, RG ;
Chen, HW ;
Crampton, D ;
McCarthy, PJ ;
Carlberg, RG ;
Marzke, RO ;
Roth, K ;
Jorgensen, I ;
Murowinski, R .
ASTROPHYSICAL JOURNAL, 2005, 635 (01) :260-279
[5]   The cosmological simulation code GADGET-2 [J].
Springel, V .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2005, 364 (04) :1105-1134
[6]   Populating a cluster of galaxies -: I.: Results at z=0 [J].
Springel, V ;
White, SDM ;
Tormen, G ;
Kauffmann, G .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2001, 328 (03) :726-750
[7]   The progenitor stars of gamma-ray bursts [J].
Woosley, SE ;
Heger, A .
ASTROPHYSICAL JOURNAL, 2006, 637 (02) :914-921
[8]   Evolution of rapidly rotating metal-poor massive stars towards gamma-ray bursts [J].
Yoon, SC ;
Langer, N .
ASTRONOMY & ASTROPHYSICS, 2005, 443 (02) :643-648