On surfaces with pg=2q-3

被引:4
作者
Lopes, Margarida Mendes [1 ]
Pardini, Rita [2 ]
机构
[1] Univ Tecn Lisboa, Inst Super Tecn, Dept Matemat, P-1049001 Lisbon, Portugal
[2] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
关键词
GENERAL TYPE; IRREGULAR SURFACES;
D O I
10.1515/ADVGEOM.2010.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study minimal complex surfaces S of general type with q (S) = q and p(g) (S) = 2q - 3, q >= 5. We give a complete classification in case that S has a fibration onto a curve of genus >= 2. For these surfaces K-2 = 8 chi. In general we prove that K-2 >= 7 chi - 1 and that the stronger inequality K-2 >= 8 chi holds under extra assumptions (e.g., if the canonical system has no fixed part or the canonical map has even degree). We also describe the Albanese map of S
引用
收藏
页码:549 / 555
页数:7
相关论文
共 14 条
[1]   On the topological index of irregular surfaces [J].
Barja, M. A. ;
Naranjo, J. C. ;
Pirola, G. P. .
JOURNAL OF ALGEBRAIC GEOMETRY, 2007, 16 (03) :435-458
[2]   CANONIC APPLICATION FOR SURFACES OF GENERAL TYPE [J].
BEAUVILLE, A .
INVENTIONES MATHEMATICAE, 1979, 55 (02) :121-140
[3]  
BEAUVILLE A, INEGALITE PG 2Q 4 SU
[4]   On the classification of irregular surfaces of general type with nonbirational bicanonical map [J].
Catanese, F ;
Ciliberto, C ;
Lopes, MM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (01) :275-308
[5]  
DEBARRE O, 1982, B SOC MATH FR, V110, P319
[6]   Surfaces with ρg = q=3 [J].
Hacon, CD ;
Pardini, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (07) :2631-2638
[7]  
PARDINI R, 1991, J REINE ANGEW MATH, V417, P191
[8]   Surfaces with pg=q=3 [J].
Pirola, GP .
MANUSCRIPTA MATHEMATICA, 2002, 108 (02) :163-170
[9]   SURFACES OF SMALL DEGREE [J].
REID, M .
MATHEMATISCHE ANNALEN, 1986, 275 (01) :71-80
[10]   Isotrivial fibred surfaces. [J].
Serrano, F .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1996, 171 :63-81