Electrical, Thermal and Optical Diagnostics of an Atmospheric Plasma Jet System

被引:42
作者
Nwankire, C. E. [1 ]
Law, V. J. [2 ]
Nindrayog, A. [3 ]
Twomey, B. [1 ]
Niemi, K. [3 ]
Milosavljevic, V. [2 ,4 ]
Graham, W. G. [3 ]
Dowling, D. P. [1 ]
机构
[1] Univ Coll Dublin, Sch Mech & Mat Engn, Dublin 4, Ireland
[2] Dublin City Univ, Natl Ctr Plasma Sci & Technol, Dublin 9, Ireland
[3] Queens Univ Belfast, Dept Phys & Astron, Ctr Plasma Phys, Belfast BT7 1NN, Antrim, North Ireland
[4] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia
基金
爱尔兰科学基金会;
关键词
Plasma jet; Diagnostics; Plasma diagnostics; Optical emission; Infrared thermography; Corona; DIELECTRIC BARRIER DISCHARGE; DEPOSITED SILOXANE; PRESSURE; ADHESION; AIR; COATINGS; HELIUM; NEEDLE;
D O I
10.1007/s11090-010-9236-5
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Plasma diagnostics of atmospheric plasmas is a key tool in helping to understand processing performance issues. This paper presents an electrical, optical and thermographic imaging study of the PlasmaStream atmospheric plasma jet system. The system was found to exhibit three operating modes; one constricted/localized plasma and two extended volume plasmas. At low power and helium flows the plasma is localized at the electrodes and has the electrical properties of a corona/filamentary discharge with electrical chaotic temporal structure. With increasing discharge power and helium flow the plasma expands into the volume of the tube, becoming regular and homogeneous in appearance. Emission spectra show evidence of atomic oxygen, nitric oxide and the hydroxyl radical production. Plasma activated gas temperature deduced from the rotational temperature of nitrogen molecules was found to be of order of 400 K: whereas thermographic imaging of the quartz tube yielded surface temperatures between 319 and 347 K.
引用
收藏
页码:537 / 552
页数:16
相关论文
共 37 条
[1]   Negative corona discharge: application to nanoparticle detection in rf reactors [J].
Abolmasov, S. N. ;
Kroely, L. ;
Roca i Cabarrocas, P. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2009, 18 (01)
[2]   Controlling deposition rates in an atmospheric pressure plasma system [J].
Albaugh, John ;
O'Sullivan, Caroline ;
O'Neill, Liam .
SURFACE & COATINGS TECHNOLOGY, 2008, 203 (5-7) :844-847
[3]   Evaluation of Cell Behaviour on Atmospheric Plasma Deposited Siloxane and Fluorosiloxane Coatings [J].
Ardhaoui, Malika ;
Naciri, Mariam ;
Mullen, Tracy ;
Brugha, Cathal ;
Keenan, Alan K. ;
Al-Rubeai, Mohamed ;
Dowling, Denis P. .
JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY, 2010, 24 (05) :889-903
[4]   Atmospheric pressure microplasma jet as a depositing tool [J].
Benedikt, J. ;
Focke, K. ;
Yanguas-Gil, A. ;
von Keudell, A. .
APPLIED PHYSICS LETTERS, 2006, 89 (25)
[5]   CORONA DISCHARGE PROCESSES [J].
CHANG, JS ;
LAWLESS, PA ;
YAMAMOTO, T .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 1991, 19 (06) :1152-1166
[6]  
DOBBYN P, 2009, Patent No. 2009034012
[7]   Influence of Atmospheric Plasma Source and Gas Composition on the Properties of Deposited Siloxane Coatings [J].
Dowling, Denis P. ;
Ramamoorthy, Amsarani ;
Rahman, Mahfujur ;
Mooney, Damian A. ;
MacElroy, J. M. Don .
PLASMA PROCESSES AND POLYMERS, 2009, 6 :S483-S489
[8]   Investigations of an atmospheric pressure plasma jet by optical emission spectroscopy [J].
Förster, S ;
Mohr, C ;
Viöl, W .
SURFACE & COATINGS TECHNOLOGY, 2005, 200 (1-4) :827-830
[9]   Soft Plasma Polymerization of Gas State Precursors from an Atmospheric Pressure Corona Plasma Discharge [J].
Herbert, P. Anthony F. ;
O'Neill, Liam ;
Jaroszynska-Wolinska, Justyna .
CHEMISTRY OF MATERIALS, 2009, 21 (19) :4401-4407
[10]   Microplasma jet at atmospheric pressure [J].
Hong, Yong Cheol ;
Uhm, Han Sup .
APPLIED PHYSICS LETTERS, 2006, 89 (22)