Synthesis of single crystal diamond by microwave plasma assisted chemical vapor deposition with in situ low-coherence interferometric control of growth rate

被引:19
作者
Bushuev, E. V. [1 ]
Yurov, V. Yu. [1 ,2 ]
Bolshakov, A. P. [1 ,2 ]
Ralchenko, V. G. [1 ,2 ,3 ]
Ashkinazi, E. E. [1 ,2 ]
Ryabova, A. V. [1 ,2 ]
Antonova, I. A. [1 ,2 ]
Volkov, P. V. [4 ]
Goryunov, A. V. [4 ]
Luk'yanov, A. Yu. [4 ]
机构
[1] Russian Acad Sci, AM Prokhorov Gen Phys Inst, Vavilov Str 38, Moscow 119991, Russia
[2] Natl Res Nucl Univ MEPhI, Kashirskoe Shosse 31, Moscow 115409, Russia
[3] Harbin Inst Technol, 92 Xidazhi Str, Harbin 150001, Peoples R China
[4] Russian Acad Sci, Inst Phys Microstruct, Acad Skaya Str 7, Afonino 603950, Nizhny Novgorod, Russia
基金
俄罗斯科学基金会;
关键词
SC diamond; Homoepitaxy; Microwave plasma; Low-coherence interferometry; Growth rate; Etching; TEMPERATURE; DETECTOR; FILMS;
D O I
10.1016/j.diamond.2016.03.023
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We performed synthesis of single crystal (SC) diamond by microwave plasma chemical vapor deposition in methane-enriched H-2-CH4 gas mixtures, and achieved growth rates more than 30 mu m/h, without adding nitrogen in reaction mixture. A low-coherence interferometry (LCI) was employed for precise measurements of the thickness and growth rate of the epitaxial diamond layers in the course of the process. The performance of this in situ technique is demonstrated by continuously monitoring the SC diamond thickness in a single growth run upon variation of CH4 percentage in steps, up to 17%, without switching off the plasma, to produce a "multilayer diamond film. In addition, etching rate of diamond in pure hydrogen plasma has been evaluated with the same method. The LCI technique allows quick collection of growth kinetics data upon systematic variation of a selected process parameter for the growth optimization. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:83 / 89
页数:7
相关论文
共 35 条
[1]   Diamond Nanophotonics [J].
Aharonovich, Igor ;
Neu, Elke .
ADVANCED OPTICAL MATERIALS, 2014, 2 (10) :911-928
[2]   High-rate growth of single crystal diamond in microwave plasma in CH4/H2 and CH4/H2/Ar gas mixtures in presence of intensive soot formation [J].
Bolshakov, A. P. ;
Ralchenko, V. G. ;
Yurov, V. Y. ;
Popovich, A. F. ;
Antonova, I. A. ;
Khomich, A. A. ;
Ashkinazi, E. E. ;
Ryzhkov, S. G. ;
Vlasov, A. V. ;
Khomich, A. V. .
DIAMOND AND RELATED MATERIALS, 2016, 62 :49-57
[3]   Study of polycrystalline diamond deposition by continuous and pulsed discharges [J].
Cicala, G. ;
Brescia, R. ;
Nitti, M. A. ;
Romeo, A. ;
Altamura, D. ;
Giannini, C. ;
Capitelli, M. ;
Spinelli, P. ;
Schutzmann, S. .
SURFACE & COATINGS TECHNOLOGY, 2010, 204 (12-13) :1884-1888
[4]  
Cicala G., 2013, J NANOPART RES, V15, P1
[5]  
Dischler B, 1998, SPR S MAT PROC, P3
[6]   Growth rate enhancement by nitrogen in diamond chemical vapor deposition-a catalytic effect [J].
Dunst, S. ;
Sternschulte, H. ;
Schreck, M. .
APPLIED PHYSICS LETTERS, 2009, 94 (22)
[7]   Experimental study of hydrogen plasma etching of (100) single crystal diamond in a MPACVD reactor [J].
Ivanov, O. A. ;
Muchnikov, A. B. ;
Chernov, V. V. ;
Bogdanov, S. A. ;
Vikharev, A. L. ;
Butler, J. E. .
MATERIALS LETTERS, 2015, 151 :115-118
[8]  
Kobashi K., 2005, Diamond Films, Chemical Vapor Deposition for Oriented and Heteroepitaxial Growth
[9]   All-carbon detector with buried graphite pillars in CVD diamond [J].
Kononenko, T. ;
Ralchenko, V. ;
Bolshakov, A. ;
Konov, V. ;
Allegrini, P. ;
Pacilli, M. ;
Conte, G. ;
Spiriti, E. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2014, 114 (02) :297-300
[10]   On the roughness of hydrogen-plasma treated diamond(100) surfaces [J].
Koslowski, B ;
Strobel, S ;
Wenig, MJ ;
Martschat, R ;
Ziemann, P .
DIAMOND AND RELATED MATERIALS, 1998, 7 (2-5) :322-326