Rigorous derivation of incompressible type Euler equations from non-isentropic Euler-Maxwell equations

被引:6
作者
Yang, Jianwei [1 ]
Wang, Shu [2 ]
Li, Yong [2 ]
Luo, Dang [1 ]
机构
[1] N China Univ Water Resources & Elect Power, Coll Math & Informat Sci, Zhengzhou 450011, Peoples R China
[2] Beijing Univ Technol, Coll Appl Sci, Beijing 100022, Peoples R China
基金
美国国家科学基金会;
关键词
Euler-Maxwell equations; Incompressible Euler equations; Quasi-neutral limit; Non-relativistic limit; Asymptotic expansion and convergence; QUASI-NEUTRAL LIMIT; POISSON SYSTEM; HYPERBOLIC SYSTEMS; CONVERGENCE;
D O I
10.1016/j.na.2010.07.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the convergence of the time-dependent and non-isentropic Euler-Maxwell equations to incompressible Euler equations in a torus via the combined quasi-neutral and non-relativistic limit. For well prepared initial data, the convergences of solutions of the former to the solutions of the latter are justified rigorously by an analysis of asymptotic expansions and energy method. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3613 / 3625
页数:13
相关论文
共 26 条
[1]  
[Anonymous], 1984, Applied Mathematical Sciences
[2]  
[Anonymous], 1984, INTRO PLASMA PHYS CO
[3]   Convergence of the Vlasov-Poisson system to the incompressible Euler equations [J].
Brenier, Y .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2000, 25 (3-4) :737-754
[4]  
BREZIS H, 1995, CR ACAD SCI I-MATH, V321, P953
[5]   Compressible Euler-Maxwell equations [J].
Chen, GQ ;
Jerome, JW ;
Wang, DH .
TRANSPORT THEORY AND STATISTICAL PHYSICS, 2000, 29 (3-5) :311-331
[6]   Quasineutral limit of an Euler-Poisson system arising from plasma physics [J].
Cordier, S ;
Grenier, E .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2000, 25 (5-6) :1099-1113
[7]   An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasineutral limit [J].
Crispel, Pierre ;
Degond, Pierre ;
Vignal, Marie-Helene .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 223 (01) :208-234
[8]  
Dinklage Andreas, 2005, LECT NOTES PHYS, V670
[9]   The asymptotic behavior of globally smooth solutions of the multidimensional isentropic hydrodynamic model for semiconductors [J].
Hsiao, L ;
Markowich, PA ;
Wang, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 192 (01) :111-133
[10]  
Jerome JW, 2005, CONTEMP MATH, V371, P193